
Core JavaScript Reference 1.5: Core JavaScript Reference

Index Next

Core JavaScript Reference 1.5

Core JavaScript Reference

This book is a reference manual for the core JavaScript language for version 1.5.
JavaScript is Netscape's cross-platform, object-based scripting language. Core
JavaScript can be extended for a variety of purposes by supplementing it with additional
objects.

About this Book

New Features in this Release
What You Should Already Know
JavaScript Versions
Where to Find JavaScript Information
Document Conventions

Part 1

Chapter 1 Objects, Methods, and Properties

Array
Boolean
Date
Function
java
JavaArray
JavaClass
JavaObject
JavaPackage
Math
netscape
Number
Object
Packages

file:///C|/Documents%20and%20Settings/george/My%2...t/JavaScript/Netscape/JS15/Refrence/contents.html (1 of 4) [9/16/2004 9:53:35 AM]

Core JavaScript Reference 1.5: Core JavaScript Reference

RegExp
String
sun

Chapter 2 Top-Level Properties and Functions

decodeURI
decodeURIComponent
encodeURI
encodeURIComponent
eval
Infinity
isFinite
isNaN
NaN
Number
parseFloat
parseInt
String
undefined

Part 2

Chapter 3 Statements

break
const
continue
do...while
export
for
for...in
function
if...else
import
label
return
switch
throw

file:///C|/Documents%20and%20Settings/george/My%2...t/JavaScript/Netscape/JS15/Refrence/contents.html (2 of 4) [9/16/2004 9:53:35 AM]

Core JavaScript Reference 1.5: Core JavaScript Reference

try...catch
var
while
with

Chapter 4 Comments

comment

Chapter 5 Operators

Assignment Operators
Comparison Operators

Using the Equality Operators
Arithmetic Operators

% (Modulus)
++ (Increment)
-- (Decrement)
- (Unary Negation)

Bitwise Operators
Bitwise Logical Operators
Bitwise Shift Operators

Logical Operators
String Operators
Special Operators

?: (Conditional operator)
, (Comma operator)
delete
function
in
instanceof
new
this
typeof
void

Part 3 LiveConn

Chapter 6 Java Classes, Constructors, and Methods

file:///C|/Documents%20and%20Settings/george/My%2...t/JavaScript/Netscape/JS15/Refrence/contents.html (3 of 4) [9/16/2004 9:53:35 AM]

Core JavaScript Reference 1.5: Core JavaScript Reference

JSException
JSObject

Part 4

Appendix A Reserved Words
Appendix B Deprecated Features
Index

Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%2...t/JavaScript/Netscape/JS15/Refrence/contents.html (4 of 4) [9/16/2004 9:53:35 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5: About this Book

Previous Contents Index Next

Core JavaScript Reference 1.5

About this Book

JavaScript is Netscape's cross-platform, object-based scripting language. This book is a
reference manual for the core JavaScript language.

This preface contains the following sections:

●

● New Features in this Release

● What You Should Already Know

● JavaScript Versions

● Where to Find JavaScript Information

● Document Conventions

New Features in this Release

JavaScript version 1.5 provides the following new features and enhancements:

●

● Runtime errors. Runtime errors are now reported as exceptions.

● Number formatting enhancements. Number formatting has been enhanced to
include Number.prototype.toExponential, Number.protoytpe.toFixed and
Number.prototype.toPrecision methods. See page 127, page 128, and page 129.

● Regular expression enhancements:
❍

❍ Greedy quantifiers - +, *, ? and {} - can now be followed by a ? to force
them to be non-greedy. See the entry for ? on page 148.

file:///C|/Documents%20and%20Settings/george/My%2...at/JavaScript/Netscape/JS15/Refrence/preface.html (1 of 5) [9/16/2004 9:54:02 AM]

Core JavaScript Reference 1.5: About this Book

❍ Non-capturing parentheses, (?:x) can be used instead of capturing
parentheses(x). When non-capturing parentheses are used, matched
subexpressions are not available as back-references. See the entry for
(?:x) on page 148.

❍ Positive and negative lookahead assertions are supported. Both assert a
match depending on what follows the string being matched. See the
entries for (?=) and (?!) on page 148.

❍ The m flag has been added to specify that the regular expression should
match over multiple lines. See page 146.

● Conditional function declarations. Functions can now be declared inside an if
clause. See page 221.

● Function expressions. Functions can now be declared inside an expression. See
page 254.

● Multiple catch clauses. Multiple catch clauses in a try...catch statement are
supported. See page 231.

● Constants. Readonly, named constants are supported. This feature is available
only in the C implementation of JavaScript. See page 215.

● Getters and Setters. JavaScript writers can now add getters and setters to their
objects. This feature is available only in the C implementation of JavaScript. See
Defining Getters and Setters in Chapter 7 of the Core JavaScript Guide for
information about this feature.

What You Should Already Know

This book assumes you have the following basic background:

●

● A general understanding of the Internet and the World Wide Web (WWW).

● Good working knowledge of HyperText Markup Language (HTML).

Some programming experience with a language such as C or Visual Basic is useful, but
not required.

file:///C|/Documents%20and%20Settings/george/My%2...at/JavaScript/Netscape/JS15/Refrence/preface.html (2 of 5) [9/16/2004 9:54:02 AM]

Core JavaScript Reference 1.5: About this Book

JavaScript Versions

Each version of Navigator supports a different version of JavaScript. To help you write
scripts that are compatible with multiple versions of Navigator, this manual lists the
JavaScript version in which each feature was implemented.

The following table lists the JavaScript version supported by different Navigator
versions. Versions of Navigator prior to 2.0 do not support JavaScript.

Table 1 JavaScript and Navigator versions

JavaScript version Navigator version

JavaScript 1.0 Navigator 2.0

JavaScript 1.1 Navigator 3.0

JavaScript 1.2 Navigator 4.0-4.05

JavaScript 1.3 Navigator 4.06-4.7x

JavaScript 1.4 -

JavaScript 1.5 Navigator 6.0

Mozilla (open source browser)

Each version of the Netscape Enterprise Server also supports a different version of
JavaScript. To help you write scripts that are compatible with multiple versions of the
Enterprise Server, this manual uses an abbreviation to indicate the server version in
which each feature was implemented.

file:///C|/Documents%20and%20Settings/george/My%2...at/JavaScript/Netscape/JS15/Refrence/preface.html (3 of 5) [9/16/2004 9:54:02 AM]

Core JavaScript Reference 1.5: About this Book

Table 2 JavaScript and Netscape Enterprise Server versions

Abbreviation Enterpriser Server version

NES 2.0 Netscape Enterprise Server 2.0

NES 3.0 Netscape Enterprise Server 3.0

Where to Find JavaScript Information

The core JavaScript documentation includes the following books:

●

● The Core JavaScript Guide provides information about the core JavaScript
language and its objects.

● The Core JavaScript Reference (this book) provides reference material for the
core JavaScript language.

If you are new to JavaScript, start with the Core JavaScript Guide. Once you have a
firm grasp of the fundamentals, you can use the Core JavaScript Reference to get more
details on individual objects and statements.

Document Conventions

JavaScript applications run on many operating systems; the information in this book
applies to all versions. File and directory paths are given in Windows format (with
backslashes separating directory names). For Unix versions, the directory paths are the
same, except that you use slashes instead of backslashes to separate directories.

This book uses uniform resource locators (URLs) of the following form:

http://server.domain/path/file.htmll

In these URLs, server represents the name of the server on which you run your
application, such as research1 or www; domain represents your Internet domain name,

file:///C|/Documents%20and%20Settings/george/My%2...at/JavaScript/Netscape/JS15/Refrence/preface.html (4 of 5) [9/16/2004 9:54:02 AM]

Core JavaScript Reference 1.5: About this Book

such as netscape.com or uiuc.edu; path represents the directory structure on the server;
and file.htmll represents an individual file name. In general, items in italics in URLs are
placeholders and items in normal monospace font are literals. If your server has Secure
Sockets Layer (SSL) enabled, you would use https instead of http in the URL.

This book uses the following font conventions:

●

● The monospace font is used for sample code and code listings, API and language
elements (such as method names and property names), file names, path names,
directory names, HTML tags, and any text that must be typed on the screen.
(Monospace italic font is used for placeholders embedded in code.)

● Italic type is used for book titles, emphasis, variables and placeholders, and
words used in the literal sense.

● Boldface type is used for glossary terms.

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%2...at/JavaScript/Netscape/JS15/Refrence/preface.html (5 of 5) [9/16/2004 9:54:02 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5:

Previous Contents Index Next

Core JavaScript Reference 1.5

Part 1 Object Reference

Chapter 1 Objects, Methods, and Properties
This chapter documents all the JavaScript objects, along with their methods and
properties. It is an alphabetical reference for the main features of JavaScript.

Chapter 2 Top-Level Properties and Functions
This chapter contains all JavaScript properties and functions not associated with any
object. In the ECMA specification, these properties and functions are referred to as
properties and methods of the global object.

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%20Do...robat/JavaScript/Netscape/JS15/Refrence/partobj.html [9/16/2004 9:54:08 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5: 1 Objects, Methods, and Properties

Previous Contents Index Next

Core JavaScript Reference 1.5

Chapter 1 Chapter 1 Objects, Methods, and Properties

This chapter documents all the JavaScript objects, along with their methods and
properties. It is an alphabetical reference for the main features of JavaScript.

The reference is organized as follows:

●

● Full entries for each object appear in alphabetical order; properties and functions
not associated with any object appear in Chapter 2, "Top-Level Properties and
Functions."
Each entry provides a complete description for an object. Tables included in the
description of each object summarize the object's methods and properties.

● Full entries for an object's methods and properties appear in alphabetical order
after the object's entry.
These entries provide a complete description for each method or property, and
include cross-references to related features in the documentation.

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%20Do...obat/JavaScript/Netscape/JS15/Refrence/objintro.html [9/16/2004 9:54:11 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5:

Previous Contents Index Next

Core JavaScript Reference 1.5

Array

Lets you work with arrays.

Core object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.3: added toSource method; changed length
property; changed push method

ECMA version ECMA-262

Created by
The Array object constructor:

new Array(arrayLength)
new Array(element0, element1, ..., elementN)

An array literal:

[element0, element1, ..., elementN]

JavaScript 1.2 when you specify LANGUAGE="JavaScript1.2" in the <SCRIPT> tag:

new Array(element0, element1, ..., elementN)

JavaScript 1.2 when you do not specify LANGUAGE="JavaScript1.2" in the

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (1 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

<SCRIPT> tag:

new Array([arrayLength])
new Array([element0[, element1[, ..., elementN]]])

JavaScript 1.1:

new Array([arrayLength])
new Array([element0[, element1[, ..., elementN]]])

Parameters

arrayLength

The initial length of the array. You can access this value using
the length property. If the value specified is not a number, an
array of length 1 is created, with the first element having the
specified value. The maximum length allowed for an array is
4,294,967,295.

elementN

A list of values for the array's elements. When this form is
specified, the array is initialized with the specified values as
its elements, and the array's length property is set to the
number of arguments.

Description
An array is an ordered set of values associated with a single variable name.

The following example creates an Array object with an array literal; the coffees array
contains three elements and a length of three:

coffees = ["French Roast", "Columbian", "Kona"]

You can construct a dense array of two or more elements starting with index 0 if you
define initial values for all elements. A dense array is one in which each element has a
value. The following code creates a dense array with three elements:

myArray = new Array("Hello", myVar, 3.14159)

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (2 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

Indexing an array. You index an array by its ordinal number. For example, assume
you define the following array:

myArray = new Array("Wind","Rain","Fire")

You then refer to the first element of the array as myArray[0] and the second element of
the array as myArray[1].

Specifying a single parameter. When you specify a single numeric parameter with the
Array constructor, you specify the initial length of the array. The following code creates
an array of five elements:

billingMethod = new Array(5)

The behavior of the Array constructor depends on whether the single parameter is a
number.

●

● If the value specified is a number, the constructor converts the number to an
unsigned, 32-bit integer and generates an array with the length property (size of
the array) set to the integer. The array initially contains no elements, even though
it might have a non-zero length.

● If the value specified is not a number, an array of length 1 is created, with the
first element having the specified value.

The following code creates an array of length 25, then assigns values to the first three
elements:

musicTypes = new Array(25)
musicTypes[0] = "R&B"
musicTypes[1] = "Blues"
musicTypes[2] = "Jazz"

Increasing the array length indirectly. An array's length increases if you assign a
value to an element higher than the current length of the array. The following code
creates an array of length 0, then assigns a value to element 99. This changes the length
of the array to 100.

colors = new Array()
colors[99] = "midnightblue"

Creating an array using the result of a match. The result of a match between a

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (3 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

regular expression and a string can create an array. This array has properties and
elements that provide information about the match. An array is the return value of
RegExp.exec, String.match, and String.replace. To help explain these properties and
elements, look at the following example and then refer to the table below:

<SCRIPT LANGUAGE="JavaScript1.2">
//Match one d followed by one or more b's followed by one d
//Remember matched b's and the following d
//Ignore case

myRe=/d(b+)(d)/i;
myArray = myRe.exec("cdbBdbsbz");

</SCRIPT>

The properties and elements returned from this match are as follows:

Property/Element Description Example

input

A read-only property that reflects the
original string against which the regular
expression was matched.

cdbBdbsbz

index

A read-only property that is the zero-
based index of the match in the string.

1

[0]

A read-only element that specifies the
last matched characters.

dbBd

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (4 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

[1], ...[n]

Read-only elements that specify the
parenthesized substring matches, if
included in the regular expression. The
number of possible parenthesized
substrings is unlimited.

[1]=bB
[2]=d

Backward Compatibility

JavaScript 1.2. When you specify a single parameter with the Array constructor, the
behavior depends on whether you specify LANGUAGE="JavaScript1.2" in the
<SCRIPT> tag:

●

● If you specify LANGUAGE="JavaScript1.2" in the <SCRIPT> tag, a single-
element array is returned. For example, new Array(5) creates a one-element
array with the first element being 5. A constructor with a single parameter acts in
the same way as a multiple parameter constructor. You cannot specify the length
property of an Array using a constructor with one parameter.

● If you do not specify LANGUAGE="JavaScript1.2" in the <SCRIPT> tag, you
specify the initial length of the array as with other JavaScript versions.

JavaScript 1.1 and earlier. When you specify a single parameter with the Array
constructor, you specify the initial length of the array. The following code creates an
array of five elements:

billingMethod = new Array(5)

JavaScript 1.0. You must index an array by its ordinal number; for example
myArray[0].

Property Summary

Property Description

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (5 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

constructor

Specifies the function that creates an object's prototype.

index

For an array created by a regular expression match, the zero-
based index of the match in the string.

input

For an array created by a regular expression match, reflects the
original string against which the regular expression was
matched.

length

Reflects the number of elements in an array.

prototype

Allows the addition of properties to all objects.

Method Summary

Method Description

concat

Joins two arrays and returns a new array.

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (6 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

join

Joins all elements of an array into a string.

pop

Removes the last element from an array and returns that element.

push

Adds one or more elements to the end of an array and returns the
new length of the array.

reverse

Transposes the elements of an array: the first array element
becomes the last and the last becomes the first.

shift

Removes the first element from an array and returns that element.

slice

Extracts a section of an array and returns a new array.

splice

Adds and/or removes elements from an array.

sort

Sorts the elements of an array.

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (7 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

toSource

Returns an array literal representing the specified array; you can
use this value to create a new array. Overrides the
Object.toSource method.

toString

Returns a string representing the array and its elements. Overrides
the Object.toString method.

unshift

Adds one or more elements to the front of an array and returns the
new length of the array.

valueOf

Returns the primitive value of the array. Overrides the
Object.valueOf method.

In addition, this object inherits the watch and unwatch methods from Object.

Examples
Example 1. The following example creates an array, msgArray, with a length of 0, then
assigns values to msgArray[0] and msgArray[99], changing the length of the array to
100.

msgArray = new Array()
msgArray[0] = "Hello"
msgArray[99] = "world"
// The following statement is true,
// because defined msgArray[99] element.
if (msgArray.length == 100)
 myVar="The length is 100."

Example 2: Two-dimensional array. The following code creates a two-dimensional
array and assigns the results to myVar.

myVar="Multidimensional array test; "
a = new Array(4)
for (i=0; i < 4; i++) {
 a[i] = new Array(4)

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (8 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

 for (j=0; j < 4; j++) {
 a[i][j] = "["+i+","+j+"]"
 }
}
for (i=0; i < 4; i++) {
 str = "Row "+i+":"
 for (j=0; j < 4; j++) {
 str += a[i][j]
 }
 myVar += str +"; "
}

This example assigns the following string to myVar (line breaks are used here for
readability):

Multidimensional array test;
Row 0:[0,0][0,1][0,2][0,3];
Row 1:[1,0][1,1][1,2][1,3];
Row 2:[2,0][2,1][2,2][2,3];
Row 3:[3,0][3,1][3,2][3,3];

concat

Joins two arrays and returns a new array.

Method of Array

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA-262

Syntax
concat(arrayName2, arrayName3, ..., arrayNameN)

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (9 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

Parameters

arrayName2...
arrayNameN

Arrays to concatenate to this array.

Description
concat does not alter the original arrays, but returns a "one level deep" copy that
contains copies of the same elements combined from the original arrays. Elements of
the original arrays are copied into the new array as follows:

●

● Object references (and not the actual object): concat copies object references into
the new array. Both the original and new array refer to the same object. If a
referenced object changes, the changes are visible to both the new and original
arrays.

● Strings and numbers (not String and Number objects): concat copies strings and
numbers into the new array. Changes to the string or number in one array does
not affect the other arrays.

If a new element is added to either array, the other array is not affected.

The following code concatenates two arrays:

alpha=new Array("a","b","c")
numeric=new Array(1,2,3)
alphaNumeric=alpha.concat(numeric) // creates array ["a","b","c",1,2,3]

The following code concatenates three arrays:

num1=[1,2,3]
num2=[4,5,6]
num3=[7,8,9]
nums=num1.concat(num2,num3) // creates array [1,2,3,4,5,6,7,8,9]

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (10 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

constructor

Specifies the function that creates an object's prototype. Note that the value of this
property is a reference to the function itself, not a string containing the function's name.

Property of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Description
See Object.constructor.

index

For an array created by a regular expression match, the zero-based index of the match in
the string.

Property of Array

Static

Implemented in JavaScript 1.2, NES 3.0

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (11 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

input

For an array created by a regular expression match, reflects the original string against
which the regular expression was matched.

Property of Array

Static

Implemented in JavaScript 1.2, NES 3.0

join

Joins all elements of an array into a string.

Method of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Syntax
join(separator)

Parameters

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (12 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

separator

Specifies a string to separate each element of the array. The
separator is converted to a string if necessary. If omitted, the
array elements are separated with a comma.

Description
The string conversions of all array elements are joined into one string.

Examples
The following example creates an array, a, with three elements, then joins the array
three times: using the default separator, then a comma and a space, and then a plus.

a = new Array("Wind","Rain","Fire")
myVar1=a.join() // assigns "Wind,Rain,Fire" to myVar1
myVar2=a.join(", ") // assigns "Wind, Rain, Fire" to myVar1
myVar3=a.join(" + ") // assigns "Wind + Rain + Fire" to myVar1

See also
Array.reverse

length

An unsigned, 32-bit integer that specifies the number of elements in an array.

Property of Array

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (13 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.3: length is an unsigned, 32-bit integer with a
value less than 232.

ECMA version ECMA-262

Description
The value of the length property is an integer with a positive sign and a value less than 2
to the 32 power (232).

You can set the length property to truncate an array at any time. When you extend an
array by changing its length property, the number of actual elements does not increase;
for example, if you set length to 3 when it is currently 2, the array still contains only 2
elements.

Examples
In the following example, the getChoice function uses the length property to iterate over
every element in the musicType array. musicType is a select element on the musicForm
form.

function getChoice() {
 for (var i = 0; i < document.musicForm.musicType.length; i++) {
 if (document.musicForm.musicType.options[i].selected == true) {
 return document.musicForm.musicType.options[i].text
 }
 }
}

The following example shortens the array statesUS to a length of 50 if the current length
is greater than 50.

if (statesUS.length > 50) {
 statesUS.length=50
}

pop

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (14 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

Removes the last element from an array and returns that element. This method changes
the length of the array.

Method of Array

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA-262 Edition 3

Syntax
pop()

Parameters
None.

Example
The following code creates the myFish array containing four elements, then removes its
last element.

myFish = ["angel", "clown", "mandarin", "surgeon"];
popped = myFish.pop();

See also
push, shift, unshift

prototype

Represents the prototype for this class. You can use the prototype to add properties or
methods to all instances of a class. For information on prototypes, see
Function.prototype.

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (15 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

Property of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

push

Adds one or more elements to the end of an array and returns the new length of the
array. This method changes the length of the array.

Method of Array

Implemented in JavaScript 1.2, NES 3.0

JavaScript 1.3: push returns the new length of the array
rather than the last element added to the array.

ECMA version ECMA-262 Edition 3

Syntax
push(element1, ..., elementN)

Parameters

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (16 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

element1, ...,
elementN

The elements to add to the end of the array.

Description
The behavior of the push method is analogous to the push function in Perl 4. Note that
this behavior is different in Perl 5.

Backward Compatibility

JavaScript 1.2. The push method returns the last element added to an array.

Example
The following code creates the myFish array containing two elements, then adds two
elements to it. After the code executes, pushed contains 4. (In JavaScript 1.2, pushed
contains "lion" after the code executes.)

myFish = ["angel", "clown"];
pushed = myFish.push("drum", "lion");

See also
pop, shift, unshift

reverse

Transposes the elements of an array: the first array element becomes the last and the last
becomes the first.

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (17 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

Method of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Syntax
reverse()

Parameters
None

Description
The reverse method transposes the elements of the calling array object.

Examples
The following example creates an array myArray, containing three elements, then
reverses the array.

myArray = new Array("one", "two", "three")
myArray.reverse()

This code changes myArray so that:

●

● myArray[0] is "three"

● myArray[1] is "two"

● myArray[2] is "one"

See also
Array.join, Array.sort

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (18 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

shift

Removes the first element from an array and returns that element. This method changes
the length of the array.

Method of Array

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA-262 Edition 3

Syntax
shift()

Parameters
None.

Example
The following code displays the myFish array before and after removing its first
element. It also displays the removed element:

myFish = ["angel", "clown", "mandarin", "surgeon"];
document.writeln("myFish before: " + myFish);
shifted = myFish.shift();
document.writeln("myFish after: " + myFish);
document.writeln("Removed this element: " + shifted);

This example displays the following:

myFish before: ["angel", "clown", "mandarin", "surgeon"]
myFish after: ["clown", "mandarin", "surgeon"]
Removed this element: angel

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (19 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

See also
pop, push, unshift

slice

Extracts a section of an array and returns a new array.

Method of Array

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA-262 Edition 3

Syntax
slice(begin[,end])

Parameters

begin

Zero-based index at which to begin extraction.

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (20 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

end

Zero-based index at which to end extraction:

●

● slice extracts up to but not including end. slice(1,4) extracts
the second element through the fourth element (elements
indexed 1, 2, and 3).

● As a negative index, end indicates an offset from the end of
the sequence. slice(2,-1) extracts the third element through the
second to last element in the sequence.

● If end is omitted, slice extracts to the end of the sequence.

Description
slice does not alter the original array, but returns a new "one level deep" copy that
contains copies of the elements sliced from the original array. Elements of the original
array are copied into the new array as follows:

●

● For object references (and not the actual object), slice copies object references
into the new array. Both the original and new array refer to the same object. If a
referenced object changes, the changes are visible to both the new and original
arrays.

● For strings and numbers (not String and Number objects), slice copies strings
and numbers into the new array. Changes to the string or number in one array
does not affect the other array.

If a new element is added to either array, the other array is not affected.

Example
In the following example, slice creates a new array, newCar, from myCar. Both include
a reference to the object myHonda. When the color of myHonda is changed to purple,
both arrays reflect the change.

<SCRIPT LANGUAGE="JavaScript1.2">

//Using slice, create newCar from myCar.
myHonda = {color:"red",wheels:4,engine:{cylinders:4,size:2.2}}

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (21 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

myCar = [myHonda, 2, "cherry condition", "purchased 1997"]
newCar = myCar.slice(0,2)

//Write the values of myCar, newCar, and the color of myHonda
// referenced from both arrays.
document.write("myCar = " + myCar + "
")
document.write("newCar = " + newCar + "
")
document.write("myCar[0].color = " + myCar[0].color + "
")
document.write("newCar[0].color = " + newCar[0].color + "

")

//Change the color of myHonda.
myHonda.color = "purple"
document.write("The new color of my Honda is " + myHonda.color + "

")

//Write the color of myHonda referenced from both arrays.
document.write("myCar[0].color = " + myCar[0].color + "
")
document.write("newCar[0].color = " + newCar[0].color + "
")

</SCRIPT>

This script writes:

myCar = [{color:"red", wheels:4, engine:{cylinders:4, size:2.2}}, 2,
 "cherry condition", "purchased 1997"]
newCar = [{color:"red", wheels:4, engine:{cylinders:4, size:2.2}}, 2]
myCar[0].color = red newCar[0].color = red
The new color of my Honda is purple
myCar[0].color = purple
newCar[0].color = purple

sort

Sorts the elements of an array.

Method of Array

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (22 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2: modified behavior.

ECMA version ECMA-262

Syntax
sort(compareFunction)

Parameters

compareFunction

Specifies a function that defines the sort order. If
omitted, the array is sorted lexicographically (in
dictionary order) according to the string conversion of
each element.

Description
If compareFunction is not supplied, elements are sorted by converting them to strings
and comparing strings in lexicographic ("dictionary" or "telephone book," not
numerical) order. For example, "80" comes before "9" in lexicographic order, but in a
numeric sort 9 comes before 80.

If compareFunction is supplied, the array elements are sorted according to the return
value of the compare function. If a and b are two elements being compared, then:

●

● If compareFunction(a, b) is less than 0, sort b to a lower index than a.

● If compareFunction(a, b) returns 0, leave a and b unchanged with respect to each
other, but sorted with respect to all different elements.

● If compareFunction(a, b) is greater than 0, sort b to a higher index than a.

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (23 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

So, the compare function has the following form:

function compare(a, b) {
 if (a is less than b by some ordering criterion)
 return -1
 if (a is greater than b by the ordering criterion)
 return 1
 // a must be equal to b
 return 0
}

To compare numbers instead of strings, the compare function can simply subtract b
from a:

function compareNumbers(a, b) {
 return a - b
}

JavaScript uses a stable sort: the index partial order of a and b does not change if a and
b are equal. If a's index was less than b's before sorting, it will be after sorting, no
matter how a and b move due to sorting.

The behavior of the sort method changed between JavaScript 1.1 and JavaScript 1.2.

In JavaScript 1.1, on some platforms, the sort method does not work. This method
works on all platforms for JavaScript 1.2.

In JavaScript 1.2, this method no longer converts undefined elements to null; instead it
sorts them to the high end of the array. For example, assume you have this script:

<SCRIPT>
a = new Array();
a[0] = "Ant";
a[5] = "Zebra";

function writeArray(x) {
 for (i = 0; i < x.length; i++) {
 document.write(x[i]);
 if (i < x.length-1) document.write(", ");
 }
}

writeArray(a);

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (24 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

a.sort();
document.write("

");
writeArray(a);
</SCRIPT>

In JavaScript 1.1, JavaScript prints:

ant, null, null, null, null, zebra
ant, null, null, null, null, zebra

In JavaScript 1.2, JavaScript prints:

ant, undefined, undefined, undefined, undefined, zebra
ant, zebra, undefined, undefined, undefined, undefined

Examples
The following example creates four arrays and displays the original array, then the
sorted arrays. The numeric arrays are sorted without, then with, a compare function.

<SCRIPT>
stringArray = new Array("Blue","Humpback","Beluga")
numericStringArray = new Array("80","9","700")
numberArray = new Array(40,1,5,200)
mixedNumericArray = new Array("80","9","700",40,1,5,200)

function compareNumbers(a, b) {
 return a - b
}

document.write("stringArray: " + stringArray.join() +"
")
document.write("Sorted: " + stringArray.sort() +"<P>")

document.write("numberArray: " + numberArray.join() +"
")
document.write("Sorted without a compare function: " + numberArray.sort()
+"
")
document.write("Sorted with compareNumbers: " +
numberArray.sort(compareNumbers) +"<P>")

document.write("numericStringArray: " + numericStringArray.join()
+"
")
document.write("Sorted without a compare function: " +
numericStringArray.sort() +"
")
document.write("Sorted with compareNumbers: " +

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (25 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

numericStringArray.sort(compareNumbers) +"<P>")

document.write("mixedNumericArray: " + mixedNumericArray.join()
+"
")
document.write("Sorted without a compare function: " +
mixedNumericArray.sort() +"
")
document.write("Sorted with compareNumbers: " +
mixedNumericArray.sort(compareNumbers) +"
")
</SCRIPT>

This example produces the following output. As the output shows, when a compare
function is used, numbers sort correctly whether they are numbers or numeric strings.

stringArray: Blue,Humpback,Beluga
Sorted: Beluga,Blue,Humpback

numberArray: 40,1,5,200
Sorted without a compare function: 1,200,40,5
Sorted with compareNumbers: 1,5,40,200

numericStringArray: 80,9,700
Sorted without a compare function: 700,80,9
Sorted with compareNumbers: 9,80,700

mixedNumericArray: 80,9,700,40,1,5,200
Sorted without a compare function: 1,200,40,5,700,80,9
Sorted with compareNumbers: 1,5,9,40,80,200,700

See also
Array.join, Array.reverse

splice

Changes the content of an array, adding new elements while removing old elements.

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (26 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

Method of Array

Implemented in JavaScript 1.2, NES 3.0

JavaScript 1.3: returns an array containing the removed
elements.

ECMA version ECMA-262 Edition 3

Syntax
splice(index, howMany, [element1][, ..., elementN])

Parameters

index

Index at which to start changing the array.

howMany

An integer indicating the number of old array elements to
remove. If howMany is 0, no elements are removed. In this
case, you should specify at least one new element.

element1, ...,
elementN

The elements to add to the array. If you don't specify any
elements, splice simply removes elements from the array.

Description
If you specify a different number of elements to insert than the number you're removing,
the array will have a different length at the end of the call.

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (27 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

The splice method returns an array containing the removed elements. If only one
element is removed, an array of one element is returned.

Backward Compatibility

JavaScript 1.2. The splice method returns the element removed, if only one element is
removed (howMany parameter is 1); otherwise, the method returns an array containing
the removed elements.

Examples
The following script illustrate the use of splice:

<SCRIPT LANGUAGE="JavaScript1.2">

myFish = ["angel", "clown", "mandarin", "surgeon"];
document.writeln("myFish: " + myFish + "
");

removed = myFish.splice(2, 0, "drum");
document.writeln("After adding 1: " + myFish);
document.writeln("removed is: " + removed + "
");

removed = myFish.splice(3, 1)
document.writeln("After removing 1: " + myFish);
document.writeln("removed is: " + removed + "
");

removed = myFish.splice(2, 1, "trumpet")
document.writeln("After replacing 1: " + myFish);
document.writeln("removed is: " + removed + "
");

removed = myFish.splice(0, 2, "parrot", "anemone", "blue")
document.writeln("After replacing 2: " + myFish);
document.writeln("removed is: " + removed);

</SCRIPT>

This script displays:

myFish: ["angel", "clown", "mandarin", "surgeon"]

After adding 1: ["angel", "clown", "drum", "mandarin", "surgeon"]
removed is: undefined

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (28 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

After removing 1: ["angel", "clown", "drum", "surgeon"]
removed is: mandarin

After replacing 1: ["angel", "clown", "trumpet", "surgeon"]
removed is: drum

After replacing 2: ["parrot", "anemone", "blue", "trumpet", "surgeon"]
removed is: ["angel", "clown"]

toSource

Returns a string representing the source code of the array.

Method of Array

Implemented in JavaScript 1.3

Syntax
toSource()

Parameters
None

Description
The toSource method returns the following values:

●

● For the built-in Array object, toSource returns the following string indicating that
the source code is not available:

 function Array() {
 [native code]

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (29 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

 }

● For instances of Array, toSource returns a string representing the source code.

This method is usually called internally by JavaScript and not explicitly in code. You
can call toSource while debugging to examine the contents of an array.

Examples
To examine the source code of an array:

alpha = new Array("a", "b", "c")
alpha.toSource() //returns ["a", "b", "c"]

See also
Array.toString

toString

Returns a string representing the specified array and its elements.

Method of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Syntax
toString()

Parameters
None.

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (30 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

Description
The Array object overrides the toString method of Object. For Array objects, the
toString method joins the array and returns one string containing each array element
separated by commas. For example, the following code creates an array and uses
toString to convert the array to a string.

var monthNames = new Array("Jan","Feb","Mar","Apr")
myVar=monthNames.toString() // assigns "Jan,Feb,Mar,Apr" to myVar

JavaScript calls the toString method automatically when an array is to be represented as
a text value or when an array is referred to in a string concatenation.

Backward Compatibility

JavaScript 1.2. When you specify LANGUAGE="JavaScript1.2" in the <SCRIPT>
tag, toString returns a string representing the source code of the array. This value is the
same as the value returned by the toSource method in JavaScript 1.3 and later versions.

<SCRIPT LANGUAGE="JavaScript1.2">
var monthNames = new Array("Jan","Feb","Mar","Apr")
myVar=monthNames.toString() // assigns '["Jan", "Feb", "Mar", "Apr"]'
 // to myVar
</SCRIPT>

See also
Array.toSource

unshift

Adds one or more elements to the beginning of an array and returns the new length of
the array.

Method of Array

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (31 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA-262 Edition 3

Syntax
arrayName.unshift(element1,..., elementN)

Parameters

element1,...,
elementN

The elements to add to the front of the array.

Example
The following code displays the myFish array before and after adding elements to it.

myFish = ["angel", "clown"];
document.writeln("myFish before: " + myFish);
unshifted = myFish.unshift("drum", "lion");
document.writeln("myFish after: " + myFish);
document.writeln("New length: " + unshifted);

This example displays the following:

myFish before: ["angel", "clown"]
myFish after: ["drum", "lion", "angel", "clown"]
New length: 4

See also
pop, push, shift

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (32 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

valueOf

Returns the primitive value of an array.

Method of Array

Implemented in JavaScript 1.1

ECMA version ECMA-262

Syntax
valueOf()

Parameters
None

Description
The Array object inherits the valueOf method of Object. The valueOf method of Array
returns the primitive value of an array or the primitive value of its elements as follows:

Object type of element Data type of returned value

Boolean Boolean

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (33 of 34) [9/16/2004 9:54:16 AM]

Core JavaScript Reference 1.5:

Number or Date number

All others string

This method is usually called internally by JavaScript and not explicitly in code.

See also
Object.valueOf

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%...bat/JavaScript/Netscape/JS15/Refrence/array.html (34 of 34) [9/16/2004 9:54:16 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5:

Previous Contents Index Next

Core JavaScript Reference 1.5

Boolean

The Boolean object is an object wrapper for a boolean value.

Core object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.3: added toSource method

ECMA version ECMA-262

Created by
The Boolean constructor:

new Boolean(value)

Parameters

value

The initial value of the Boolean object. The value is converted to a
boolean value, if necessary. If value is omitted or is 0, -0, null, false,
NaN, undefined, or the empty string (""), the object has an initial
value of false. All other values, including any object or the string
"false", create an object with an initial value of true.

file:///C|/Documents%20and%20Settings/george/My%...t/JavaScript/Netscape/JS15/Refrence/boolean.html (1 of 8) [9/16/2004 9:54:19 AM]

Core JavaScript Reference 1.5:

Description
Do not confuse the primitive Boolean values true and false with the true and false
values of the Boolean object.

Any object whose value is not undefined or null, including a Boolean object whose
value is false, evaluates to true when passed to a conditional statement. For example, the
condition in the following if statement evaluates to true:

x = new Boolean(false);
if(x) //the condition is true

This behavior does not apply to Boolean primitives. For example, the condition in the
following if statement evaluates to false:

x = false;
if(x) //the condition is false

Do not use a Boolean object to convert a non-boolean value to a boolean value. Instead,
use Boolean as a function to perform this task:

x = Boolean(expression) //preferred
x = new Boolean(expression) //don't use

If you specify any object, including a Boolean object whose value is false, as the initial
value of a Boolean object, the new Boolean object has a value of true.

myFalse=new Boolean(false) // initial value of false
g=new Boolean(myFalse) //initial value of true
myString=new String("Hello") // string object
s=new Boolean(myString) //initial value of true

Do not use a Boolean object in place of a Boolean primitive.

Backward Compatibility

JavaScript 1.2 and earlier versions. The Boolean object behaves as follows:

●

● When a Boolean object is used as the condition in a conditional test, JavaScript
returns the value of the Boolean object. For example, a Boolean object whose
value is false is treated as the primitive value false, and a Boolean object whose

file:///C|/Documents%20and%20Settings/george/My%...t/JavaScript/Netscape/JS15/Refrence/boolean.html (2 of 8) [9/16/2004 9:54:19 AM]

Core JavaScript Reference 1.5:

value is true is treated as the primitive value true in conditional tests. If the
Boolean object is a false object, the conditional statement evaluates to false.

● You can use a Boolean object in place of a Boolean primitive.

Property Summary

Property Description

constructor

Specifies the function that creates an object's prototype.

prototype

Defines a property that is shared by all Boolean objects.

Method Summary

Method Description

toSource

Returns an object literal representing the specified Boolean
object; you can use this value to create a new object. Overrides
the Object.toSource method.

toString

Returns a string representing the specified object. Overrides the
Object.toString method.

file:///C|/Documents%20and%20Settings/george/My%...t/JavaScript/Netscape/JS15/Refrence/boolean.html (3 of 8) [9/16/2004 9:54:19 AM]

Core JavaScript Reference 1.5:

valueOf

Returns the primitive value of a Boolean object. Overrides the
Object.valueOf method.

In addition, this object inherits the watch and unwatch methods from Object.

Examples
The following examples create Boolean objects with an initial value of false:

bNoParam = new Boolean()
bZero = new Boolean(0)
bNull = new Boolean(null)
bEmptyString = new Boolean("")
bfalse = new Boolean(false)

The following examples create Boolean objects with an initial value of true:

btrue = new Boolean(true)
btrueString = new Boolean("true")
bfalseString = new Boolean("false")
bSuLin = new Boolean("Su Lin")

constructor

Specifies the function that creates an object's prototype. Note that the value of this
property is a reference to the function itself, not a string containing the function's name.

Property of Boolean

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

file:///C|/Documents%20and%20Settings/george/My%...t/JavaScript/Netscape/JS15/Refrence/boolean.html (4 of 8) [9/16/2004 9:54:19 AM]

Core JavaScript Reference 1.5:

Description
See Object.constructor.

prototype

Represents the prototype for this class. You can use the prototype to add properties or
methods to all instances of a class. For information on prototypes, see
Function.prototype.

Property of Boolean

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

toSource

Returns a string representing the source code of the object.

Method of Boolean

Implemented in JavaScript 1.3

Syntax
toSource()

file:///C|/Documents%20and%20Settings/george/My%...t/JavaScript/Netscape/JS15/Refrence/boolean.html (5 of 8) [9/16/2004 9:54:19 AM]

Core JavaScript Reference 1.5:

Parameters
None

Description
The toSource method returns the following values:

●

● For the built-in Boolean object, toSource returns the following string indicating
that the source code is not available:

 function Boolean() {
 [native code]
 }

● For instances of Boolean, toSource returns a string representing the source code.

This method is usually called internally by JavaScript and not explicitly in code.

See also
Object.toSource

toString

Returns a string representing the specified Boolean object.

Method of Boolean

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

file:///C|/Documents%20and%20Settings/george/My%...t/JavaScript/Netscape/JS15/Refrence/boolean.html (6 of 8) [9/16/2004 9:54:19 AM]

Core JavaScript Reference 1.5:

Syntax
toString()

Parameters
None.

Description
The Boolean object overrides the toString method of the Object object; it does not
inherit Object.toString. For Boolean objects, the toString method returns a string
representation of the object.

JavaScript calls the toString method automatically when a Boolean is to be represented
as a text value or when a Boolean is referred to in a string concatenation.

For Boolean objects and values, the built-in toString method returns the string "true" or
"false" depending on the value of the boolean object. In the following code,
flag.toString returns "true".

var flag = new Boolean(true)
var myVar=flag.toString()

See also
Object.toString

valueOf

Returns the primitive value of a Boolean object.

Method of Boolean

Implemented in JavaScript 1.1

file:///C|/Documents%20and%20Settings/george/My%...t/JavaScript/Netscape/JS15/Refrence/boolean.html (7 of 8) [9/16/2004 9:54:19 AM]

Core JavaScript Reference 1.5:

ECMA version ECMA-262

Syntax
valueOf()

Parameters
None

Description
The valueOf method of Boolean returns the primitive value of a Boolean object or
literal Boolean as a Boolean data type.

This method is usually called internally by JavaScript and not explicitly in code.

Examples
x = new Boolean();
myVar=x.valueOf() //assigns false to myVar

See also
Object.valueOf

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated May 19, 2003

file:///C|/Documents%20and%20Settings/george/My%...t/JavaScript/Netscape/JS15/Refrence/boolean.html (8 of 8) [9/16/2004 9:54:19 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5:

Previous Contents Index Next

Core JavaScript Reference 1.5

Date

Lets you work with dates and times.

Core object

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.1: added prototype property.

JavaScript 1.3: removed platform dependencies to
provide a uniform behavior across platforms; added
ms_num parameter to Date constructor; added
getFullYear, setFullYear, getMilliseconds,
setMilliseconds, toSource, and UTC methods (such as
getUTCDate and setUTCDate).

ECMA version ECMA-262

Created by
The Date constructor:

new Date()
new Date(milliseconds)
new Date(dateString)
new Date(yr_num, mo_num, day_num
 [, hr_num, min_num, sec_num, ms_num])

Versions prior to JavaScript 1.3:
file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/date.html (1 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

new Date()
new Date(milliseconds)
new Date(dateString)
new Date(yr_num, mo_num, day_num[, hr_num, min_num, sec_num])

Parameters

milliseconds

Integer value representing the number of milliseconds
since 1 January 1970 00:00:00.

dateString

String value representing a date. The string should be
in a format recognized by the Date.parse method.

yr_num, mo_num,
day_num

Integer values representing part of a date. As an integer
value, the month is represented by 0 to 11 with
0=January and 11=December.

hr_num, min_num,
sec_num, ms_num

Integer values representing part of a date.

Description
If you supply no arguments, the constructor creates a Date object for today's date and
time according to local time. If you supply some arguments but not others, the missing
arguments are set to 0. If you supply any arguments, you must supply at least the year,
month, and day. You can omit the hours, minutes, seconds, and milliseconds.

The date is measured in milliseconds since midnight 01 January, 1970 UTC. A day
holds 86,400,000 milliseconds. The Date object range is -100,000,000 days to
100,000,000 days relative to 01 January, 1970 UTC.

file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/date.html (2 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

The Date object provides uniform behavior across platforms.

The Date object supports a number of UTC (universal) methods, as well as local time
methods. UTC, also known as Greenwich Mean Time (GMT), refers to the time as set
by the World Time Standard. The local time is the time known to the computer where
JavaScript is executed.

For compatibility with millennium calculations (in other words, to take into account the
year 2000), you should always specify the year in full; for example, use 1998, not 98.
To assist you in specifying the complete year, JavaScript includes the methods
getFullYear, setFullYear, getFullUTCYear, and setFullUTCYear.

The following example returns the time elapsed between timeA and timeB in
milliseconds.

timeA = new Date();
// Statements here to take some action.
timeB = new Date();
timeDifference = timeB - timeA;

Backward Compatibility

JavaScript 1.2 and earlier. The Date object behaves as follows:

●

● Dates prior to 1970 are not allowed.

● JavaScript depends on platform-specific date facilities and behavior; the
behavior of the Date object varies from platform to platform.

Property Summary

Property Description

constructor

Specifies the function that creates an object's prototype.

file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/date.html (3 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

prototype

Allows the addition of properties to a Date object.

Method Summary

Method Description

getDate

Returns the day of the month for the specified date
according to local time.

getDay

Returns the day of the week for the specified date
according to local time.

getFullYear Returns the year of the specified date according to
local time.

getHours

Returns the hour in the specified date according to
local time.

getMilliseconds Returns the milliseconds in the specified date
according to local time.

getMinutes

Returns the minutes in the specified date according
to local time.

file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/date.html (4 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

getMonth

Returns the month in the specified date according to
local time.

getSeconds

Returns the seconds in the specified date according
to local time.

getTime

Returns the numeric value corresponding to the time
for the specified date according to local time.

getTimezoneOffset

Returns the time-zone offset in minutes for the
current locale.

getUTCDate Returns the day (date) of the month in the specified
date according to universal time.

getUTCDay Returns the day of the week in the specified date
according to universal time.

getUTCFullYear Returns the year in the specified date according to
universal time.

getUTCHours Returns the hours in the specified date according to
universal time.

getUTCMilliseconds Returns the milliseconds in the specified date
according to universal time.

getUTCMinutes Returns the minutes in the specified date according
to universal time.

file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/date.html (5 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

getUTCMonth Returns the month according in the specified date
according to universal time.

getUTCSeconds Returns the seconds in the specified date according
to universal time.

getYear

Returns the year in the specified date according to
local time.

parse

Returns the number of milliseconds in a date string
since January 1, 1970, 00:00:00, local time.

setDate

Sets the day of the month for a specified date
according to local time.

setFullYear Sets the full year for a specified date according to
local time.

setHours

Sets the hours for a specified date according to local
time.

setMilliseconds Sets the milliseconds for a specified date according
to local time.

setMinutes

Sets the minutes for a specified date according to
local time.

file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/date.html (6 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

setMonth

Sets the month for a specified date according to
local time.

setSeconds Sets the seconds for a specified date according to
local time.

setTime Sets the value of a Date object according to local
time.

setUTCDate Sets the day of the month for a specified date
according to universal time.

setUTCFullYear Sets the full year for a specified date according to
universal time.

setUTCHours Sets the hour for a specified date according to
universal time.

setUTCMilliseconds Sets the milliseconds for a specified date according
to universal time.

setUTCMinutes Sets the minutes for a specified date according to
universal time.

setUTCMonth Sets the month for a specified date according to
universal time.

setUTCSeconds Sets the seconds for a specified date according to
universal time.

setYear

Sets the year for a specified date according to local
time.

file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/date.html (7 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

toGMTString

Converts a date to a string, using the Internet GMT
conventions.

toLocaleString

Converts a date to a string, using the current locale's
conventions.

toLocaleDateString

Returns the "date" portion of the Date as a string,
using the current locale's conventions.

toLocaleTimeString

Returns the "time" portion of the Date as a string,
using the current locale's conventions.

toSource

Returns an object literal representing the specified
Date object; you can use this value to create a new
object. Overrides the Object.toSource method.

toString

Returns a string representing the specified Date
object. Overrides the Object.toString method.

toUTCString Converts a date to a string, using the universal time
convention.

UTC

Returns the number of milliseconds in a Date object
since January 1, 1970, 00:00:00, universal time.

valueOf

Returns the primitive value of a Date object.
Overrides the Object.valueOf method.

file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/date.html (8 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

In addition, this object inherits the watch and unwatch methods from Object.

Examples
The following examples show several ways to assign dates:

today = new Date()
birthday = new Date("December 17, 1995 03:24:00")
birthday = new Date(95,11,17)
birthday = new Date(95,11,17,3,24,0)

constructor

Specifies the function that creates an object's prototype. Note that the value of this
property is a reference to the function itself, not a string containing the function's name.

Property of Date

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Description
See Object.constructor.

getDate

Returns the day of the month for the specified date according to local time.

file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/date.html (9 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
getDate()

Parameters
None

Description
The value returned by getDate is an integer between 1 and 31.

Examples
The second statement below assigns the value 25 to the variable day, based on the value
of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
day = Xmas95.getDate()

See also
Date.getUTCDate, Date.getUTCDay, Date.setDate

getDay

Returns the day of the week for the specified date according to local time.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (10 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
getDay()

Parameters
None

Description
The value returned by getDay is an integer corresponding to the day of the week: 0 for
Sunday, 1 for Monday, 2 for Tuesday, and so on.

Examples
The second statement below assigns the value 1 to weekday, based on the value of the
Date object Xmas95. December 25, 1995, is a Monday.

Xmas95 = new Date("December 25, 1995 23:15:00")
weekday = Xmas95.getDay()

See also
Date.getUTCDay, Date.setDate

getFullYear

Returns the year of the specified date according to local time.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (11 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

Syntax
getFullYear()

Parameters
None

Description
The value returned by getFullYear is an absolute number. For dates between the years
1000 and 9999, getFullYear returns a four-digit number, for example, 1995. Use this
function to make sure a year is compliant with years after 2000.

Use this method instead of the getYear method.

Examples
The following example assigns the four-digit value of the current year to the variable yr.

var yr;
Today = new Date();
yr = Today.getFullYear();

See also
Date.getYear, Date.getUTCFullYear , Date.setFullYear

getHours

Returns the hour for the specified date according to local time.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (12 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
getHours()

Parameters
None

Description
The value returned by getHours is an integer between 0 and 23.

Examples
The second statement below assigns the value 23 to the variable hours, based on the
value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
hours = Xmas95.getHours()

See also
Date.getUTCHours, Date.setHours

getMilliseconds

Returns the milliseconds in the specified date according to local time.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (13 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

Syntax
getMilliseconds()

Parameters
None

Description
The value returned by getMilliseconds is a number between 0 and 999.

Examples
The following example assigns the milliseconds portion of the current time to the
variable ms.

var ms;
Today = new Date();
ms = Today.getMilliseconds();

See also
Date.getUTCMilliseconds , Date.setMilliseconds

getMinutes

Returns the minutes in the specified date according to local time.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (14 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
getMinutes()

Parameters
None

Description
The value returned by getMinutes is an integer between 0 and 59.

Examples
The second statement below assigns the value 15 to the variable minutes, based on the
value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
minutes = Xmas95.getMinutes()

See also
Date.getUTCMinutes, Date.setMinutes

getMonth

Returns the month in the specified date according to local time.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (15 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
getMonth()

Parameters
None

Description
The value returned by getMonth is an integer between 0 and 11. 0 corresponds to
January, 1 to February, and so on.

Examples
The second statement below assigns the value 11 to the variable month, based on the
value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
month = Xmas95.getMonth()

See also
Date.getUTCMonth, Date.setMonth

getSeconds

Returns the seconds in the current time according to local time.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (16 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
getSeconds()

Parameters
None

Description
The value returned by getSeconds is an integer between 0 and 59.

Examples
The second statement below assigns the value 30 to the variable secs, based on the
value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:30")
secs = Xmas95.getSeconds()

See also
Date.getUTCSeconds, Date.setSeconds

getTime

Returns the numeric value corresponding to the time for the specified date according to
local time.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (17 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
getTime()

Parameters
None

Description
The value returned by the getTime method is the number of milliseconds since 1
January 1970 00:00:00. You can use this method to help assign a date and time to
another Date object.

Examples
The following example assigns the date value of theBigDay to sameAsBigDay:

theBigDay = new Date("July 1, 1999")
sameAsBigDay = new Date()
sameAsBigDay.setTime(theBigDay.getTime())

See also
Date.getUTCHours, Date.setTime

getTimezoneOffset

Returns the time-zone offset in minutes for the current locale.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (18 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
getTimezoneOffset()

Parameters
None

Description
The time-zone offset is the difference between local time and Greenwich Mean Time
(GMT). Daylight savings time prevents this value from being a constant.

Examples
x = new Date()
currentTimeZoneOffsetInHours = x.getTimezoneOffset()/60

getUTCDate

Returns the day (date) of the month in the specified date according to universal time.

Method of Date

Implemented in JavaScript 1.3

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (19 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

ECMA version ECMA-262

Syntax
getUTCDate()

Parameters
None

Description
The value returned by getUTCDate is an integer between 1 and 31.

Examples
The following example assigns the day portion of the current date to the variable d.

var d;
Today = new Date();
d = Today.getUTCDate();

See also
Date.getDate , Date.getUTCDay , Date.setUTCDate

getUTCDay

Returns the day of the week in the specified date according to universal time.

Method of Date

Implemented in JavaScript 1.3

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (20 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

ECMA version ECMA-262

Syntax
getUTCDay()

Parameters
None

Description
The value returned by getUTCDay is an integer corresponding to the day of the week: 0
for Sunday, 1 for Monday, 2 for Tuesday, and so on.

Examples
The following example assigns the weekday portion of the current date to the variable
ms.

var weekday;
Today = new Date()
weekday = Today.getUTCDay()

See also
Date.getDay , Date.getUTCDate , Date.setUTCDate

getUTCFullYear

Returns the year in the specified date according to universal time.

Method of Date

Implemented in JavaScript 1.3

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (21 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

ECMA version ECMA-262

Syntax
getUTCFullYear()

Parameters
None

Description
The value returned by getUTCFullYear is an absolute number that is compliant with
year-2000, for example, 1995.

Examples
The following example assigns the four-digit value of the current year to the variable yr.

var yr;
Today = new Date();
yr = Today.getUTCFullYear();

See also
Date.getFullYear , Date.setFullYear

getUTCHours

Returns the hours in the specified date according to universal time.

Method of Date

Implemented in JavaScript 1.3

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (22 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

ECMA version ECMA-262

Syntax
getUTCHours()

Parameters
None

Description
The value returned by getUTCHours is an integer between 0 and 23.

Examples
The following example assigns the hours portion of the current time to the variable hrs.

var hrs;
Today = new Date();
hrs = Today.getUTCHours();

See also
Date.getHours , Date.setUTCHours

getUTCMilliseconds

Returns the milliseconds in the specified date according to universal time.

Method of Date

Implemented in JavaScript 1.3

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (23 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

ECMA version ECMA-262

Syntax
getUTCMilliSeconds()

Parameters
None

Description
The value returned by getUTCMilliseconds is an integer between 0 and 999.

Examples
The following example assigns the milliseconds portion of the current time to the
variable ms.

var ms;
Today = new Date();
ms = Today.getUTCMilliseconds();

See also
Date.getMilliseconds , Date.setUTCMilliseconds

getUTCMinutes

Returns the minutes in the specified date according to universal time.

Method of Date

Implemented in JavaScript 1.3

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (24 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

ECMA version ECMA-262

Syntax
getUTCMinutes()

Parameters
None

Description
The value returned by getUTCMinutes is an integer between 0 and 59.

Examples
The following example assigns the minutes portion of the current time to the variable
min.

var min;
Today = new Date();
min = Today.getUTCMinutes();

See also
Date.getMinutes , Date.setUTCMinutes

getUTCMonth

Returns the month according in the specified date according to universal time.

Method of Date

Implemented in JavaScript 1.3

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (25 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

ECMA version ECMA-262

Syntax
getUTCMonth()

Parameters
None

Description
The value returned by getUTCMonth is an integer between 0 and 11 corresponding to
the month. 0 for January, 1 for February, 2 for March, and so on.

Examples
The following example assigns the month portion of the current date to the variable
mon.

var mon;
Today = new Date();
mon = Today.getUTCMonth();

See also
Date.getMonth , Date.setUTCMonth

font face="Arial, Helvetica, sans-serif" size= "4">getUTCSeconds

Returns the seconds in the specified date according to universal time.

Method of Date

Implemented in JavaScript 1.3

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (26 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

ECMA version ECMA-262

Syntax
getUTCSeconds()

Parameters
None

Description
The value returned by getUTCSeconds is an integer between 0 and 59.

Examples
The following example assigns the seconds portion of the current time to the variable
sec.

var sec;
Today = new Date();
sec = Today.getUTCSeconds();

See also
Date.getSeconds , Date.setUTCSeconds

getYear

Returns the year in the specified date according to local time.

Method of Date

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (27 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.3: deprecated; also, getYear returns the year
minus 1900 regardless of the year specified

ECMA version ECMA-262

Syntax
getYear()

Parameters
None

Description
getYear is no longer used and has been replaced by the getFullYear method.

The getYear method returns the year minus 1900; thus:

●

● For years above 2000, the value returned by getYear is 100 or greater. For
example, if the year is 2026, getYear returns 126.

● For years between and including 1900 and 1999, the value returned by getYear is
between 0 and 99. For example, if the year is 1976, getYear returns 76.

● For years less than 1900 or greater than 1999, the value returned by getYear is
less than 0. For example, if the year is 1800, getYear returns -100.

To take into account years before and after 2000, you should use Date.getFullYear
instead of getYear so that the year is specified in full.

Backward Compatibility

JavaScript 1.2 and earlier versions. The getYear method returns either a 2-digit or 4-
digit year:

●

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (28 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

● For years between and including 1900 and 1999, the value returned by getYear is
the year minus 1900. For example, if the year is 1976, the value returned is 76.

● For years less than 1900 or greater than 1999, the value returned by getYear is
the four-digit year. For example, if the year is 1856, the value returned is 1856.
If the year is 2026, the value returned is 2026.

Examples
Example 1. The second statement assigns the value 95 to the variable year.

Xmas = new Date("December 25, 1995 23:15:00")
year = Xmas.getYear() // returns 95

Example 2. The second statement assigns the value 100 to the variable year.

Xmas = new Date("December 25, 2000 23:15:00")
year = Xmas.getYear() // returns 100

Example 3. The second statement assigns the value -100 to the variable year.

Xmas = new Date("December 25, 1800 23:15:00")
year = Xmas.getYear() // returns -100

Example 4. The second statement assigns the value 95 to the variable year, representing
the year 1995.

Xmas.setYear(95)
year = Xmas.getYear() // returns 95

See also
Date.getFullYear, Date.getUTCFullYear, Date.setYear

parse

Returns the number of milliseconds in a date string since January 1, 1970, 00:00:00,
local time.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (29 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Method of Date

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
Date.parse(dateString)

Parameters
:

dateString

A string representing a date.

Description
The parse method takes a date string (such as "Dec 25, 1995") and returns the number
of milliseconds since January 1, 1970, 00:00:00 (local time). This function is useful for
setting date values based on string values, for example in conjunction with the setTime
method and the Date object.

Given a string representing a time, parse returns the time value. It accepts the IETF
standard date syntax: "Mon, 25 Dec 1995 13:30:00 GMT". It understands the
continental US time-zone abbreviations, but for general use, use a time-zone offset, for
example, "Mon, 25 Dec 1995 13:30:00 GMT+0430" (4 hours, 30 minutes west of the
Greenwich meridian). If you do not specify a time zone, the local time zone is assumed.
GMT and UTC are considered equivalent.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (30 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Because parse is a static method of Date, you always use it as Date.parse(), rather than
as a method of a Date object you created.

Examples
If IPOdate is an existing Date object, then you can set it to August 9, 1995 as follows:

IPOdate.setTime(Date.parse("Aug 9, 1995"))

See also
Date.UTC

prototype

Represents the prototype for this class. You can use the prototype to add properties or
methods to all instances of a class. For information on prototypes, see
Function.prototype.

Property of Date

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

setDate

Sets the day of the month for a specified date according to local time.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (31 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
setDate(dayValue)

Parameters

dayValue

An integer from 1 to 31, representing the day of the month.

Examples
The second statement below changes the day for theBigDay to July 24 from its original
value.

theBigDay = new Date("July 27, 1962 23:30:00")
theBigDay.setDate(24)

See also
Date.getDate, Date.setUTCDate

setFullYear

Sets the full year for a specified date according to local time.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (32 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

Syntax
setFullYear(yearValue[, monthValue[, dayValue]])

Parameters

yearValue

An integer specifying the numeric value of the year, for
example, 1995.

monthValue

An integer between 0 and 11 representing the months January
through December.

dayValue

An integer between 1 and 31 representing the day of the
month. If you specify the dayValue parameter, you must also
specify the monthValue.

Description
If you do not specify the monthValue and dayValue parameters, the values returned
from the getMonth and getDate methods are used.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (33 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

If a parameter you specify is outside of the expected range, setFullYear attempts to
update the other parameters and the date information in the Date object accordingly. For
example, if you specify 15 for monthValue, the year is incremented by 1 (year + 1), and
3 is used for the month.

Examples
theBigDay = new Date();
theBigDay.setFullYear(1997);

See also
Date.getUTCFullYear ,Date.setUTCFullYear, Date.setYear

setHours

Sets the hours for a specified date according to local time.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.3: Added minutesValue, secondsValue, and
msValue parameters.

ECMA version ECMA-262

Syntax
setHours(hoursValue[, minutesValue[, secondsValue[, msValue]]])

Versions prior to JavaScript 1.3:

setHours(hoursValue)

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (34 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Parameters

hoursValue

An integer between 0 and 23, representing the hour.

minutesValue

An integer between 0 and 59, representing the minutes.

secondsValue

An integer between 0 and 59, representing the seconds. If
you specify the secondsValue parameter, you must also
specify the minutesValue.

msValue

A number between 0 and 999, representing the milliseconds.
If you specify the msValue parameter, you must also specify
the minutesValue and secondsValue.

Description
If you do not specify the minutesValue, secondsValue, and msValue parameters, the
values returned from the getUTCMinutes, getUTCSeconds, and getMilliseconds
methods are used.

If a parameter you specify is outside of the expected range, setHours attempts to update
the date information in the Date object accordingly. For example, if you use 100 for
secondsValue, the minutes will be incremented by 1 (min + 1), and 40 will be used for
seconds.

Examples
theBigDay.setHours(7)

See also

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (35 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Date.getHours, Date.setUTCHours

setMilliseconds

Sets the milliseconds for a specified date according to local time.

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

Syntax
setMilliseconds(millisecondsValue)

Parameters

millisecondsValue

A number between 0 and 999, representing the
milliseconds.

Description
If you specify a number outside the expected range, the date information in the Date
object is updated accordingly. For example, if you specify 1005, the number of seconds
is incremented by 1, and 5 is used for the milliseconds.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (36 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Examples
theBigDay = new Date();
theBigDay.setMilliseconds(100);

See also
Date.getMilliseconds , Date.setUTCMilliseconds

setMinutes

Sets the minutes for a specified date according to local time.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.3: Added secondsValue and msValue
parameters.

ECMA version ECMA-262

Syntax
setMinutes(minutesValue[, secondsValue[, msValue]])

Versions prior to JavaScript 1.3:

setMinutes(minutesValue)

Parameters

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (37 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

minutesValue

An integer between 0 and 59, representing the minutes.

secondsValue

An integer between 0 and 59, representing the seconds. If
you specify the secondsValue parameter, you must also
specify the minutesValue.

msValue

A number between 0 and 999, representing the milliseconds.
If you specify the msValue parameter, you must also specify
the minutesValue and secondsValue.

Examples
theBigDay.setMinutes(45)

Description
If you do not specify the secondsValue and msValue parameters, the values returned
from getSeconds and getMilliseconds methods are used.

If a parameter you specify is outside of the expected range, setMinutes attempts to
update the date information in the Date object accordingly. For example, if you use 100
for secondsValue, the minutes (minutesValue) will be incremented by 1 (minutesValue
+ 1), and 40 will be used for seconds.

See also
Date.getMinutes, Date.setUTCMilliseconds

setMonth

Sets the month for a specified date according to local time.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (38 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Method of Date

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.3: Added dayValue parameter.

ECMA version ECMA-262

Syntax
setMonth(monthValue[, dayValue])

Versions prior to JavaScript 1.3:

setMonth(monthValue)

Parameters

monthValue

An integer between 0 and 11 (representing the months January
through December).

dayValue

An integer from 1 to 31, representing the day of the month.

Description
If you do not specify the dayValue parameter, the value returned from the getDate
method is used.

If a parameter you specify is outside of the expected range, setMonth attempts to update
the date information in the Date object accordingly. For example, if you use 15 for

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (39 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

monthValue, the year will be incremented by 1 (year + 1), and 3 will be used for month.

Examples
theBigDay.setMonth(6)

See also
Date.getMonth, Date.setUTCMonth

setSeconds

Sets the seconds for a specified date according to local time.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.3: Added msValue parameter.

ECMA version ECMA-262

Syntax
setSeconds(secondsValue[, msValue])

Versions prior to JavaScript 1.3:

setSeconds(secondsValue)

Parameters

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (40 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

secondsValue

An integer between 0 and 59.

msValue

A number between 0 and 999, representing the milliseconds.

Description
If you do not specify the msValue parameter, the value returned from the
getMilliseconds methods is used.

If a parameter you specify is outside of the expected range, setSeconds attempts to
update the date information in the Date object accordingly. For example, if you use 100
for secondsValue, the minutes stored in the Date object will be incremented by 1, and
40 will be used for seconds.

Examples
theBigDay.setSeconds(30)

See also
Date.getSeconds, Date.setUTCSeconds

setTime

Sets the value of a Date object according to local time.

Method of Date

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (41 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
setTime(timevalue)

Parameters

timevalue

An integer representing the number of milliseconds since 1
January 1970 00:00:00.

Description
Use the setTime method to help assign a date and time to another Date object.

Examples
theBigDay = new Date("July 1, 1999")
sameAsBigDay = new Date()
sameAsBigDay.setTime(theBigDay.getTime())

See also
Date.getTime, Date.setUTCHours

setUTCDate

Sets the day of the month for a specified date according to universal time.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (42 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

Syntax
setUTCDate(dayValue)

Parameters

dayValue

An integer from 1 to 31, representing the day of the month.

Description
If a parameter you specify is outside of the expected range, setUTCDate attempts to
update the date information in the Date object accordingly. For example, if you use 40
for dayValue, and the month stored in the Date object is June, the day will be changed
to 10 and the month will be incremented to July.

Examples
theBigDay = new Date();
theBigDay.setUTCDate(20);

See also
Date.getUTCDate , Date.setDate

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (43 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

setUTCFullYear

Sets the full year for a specified date according to universal time.

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

Syntax
setUTCFullYear(yearValue[, monthValue[, dayValue]])

Parameters

yearValue

An integer specifying the numeric value of the year, for
example, 1995.

monthValue

An integer between 0 and 11 representing the months January
through December.

dayValue

An integer between 1 and 31 representing the day of the
month. If you specify the dayValue parameter, you must also
specify the monthValue.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (44 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Description
If you do not specify the monthValue and dayValue parameters, the values returned
from the getMonth and getDate methods are used.

If a parameter you specify is outside of the expected range, setUTCFullYear attempts to
update the other parameters and the date information in the Date object accordingly. For
example, if you specify 15 for monthValue, the year is incremented by 1 (year + 1), and
3 is used for the month.

Examples
theBigDay = new Date();
theBigDay.setUTCFullYear(1997);

See also
Date.getUTCFullYear , Date.setFullYear

setUTCHours

Sets the hour for a specified date according to universal time.

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

Syntax
setUTCHours(hoursValue[, minutesValue[, secondsValue[, msValue]]])

Parameters

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (45 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

hoursValue

An integer between 0 and 23, representing the hour.

minutesValue

An integer between 0 and 59, representing the minutes.

secondsValue

An integer between 0 and 59, representing the seconds. If
you specify the secondsValue parameter, you must also
specify the minutesValue.

msValue

A number between 0 and 999, representing the milliseconds.
If you specify the msValue parameter, you must also specify
the minutesValue and secondsValue.

Description
If you do not specify the minutesValue, secondsValue, and msValue parameters, the
values returned from the getUTCMinutes, getUTCSeconds, and getUTCMilliseconds
methods are used.

If a parameter you specify is outside of the expected range, setUTCHours attempts to
update the date information in the Date object accordingly. For example, if you use 100
for secondsValue, the minutes will be incremented by 1 (min + 1), and 40 will be used
for seconds.

Examples
theBigDay = new Date();
theBigDay.setUTCHours(8);

See also
Date.getUTCHours , Date.setHours

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (46 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

setUTCMilliseconds

Sets the milliseconds for a specified date according to universal time.

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

Syntax
setUTCMilliseconds(millisecondsValue)

Parameters

millisecondsValue

A number between 0 and 999, representing the
milliseconds.

Description
If a parameter you specify is outside of the expected range, setUTCMilliseconds
attempts to update the date information in the Date object accordingly. For example, if
you use 1100 for millisecondsValue, the seconds stored in the Date object will be
incremented by 1, and 100 will be used for milliseconds.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (47 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Examples
theBigDay = new Date();
theBigDay.setUTCMilliseconds(500);

See also
Date.getUTCMilliseconds , Date.setMilliseconds

setUTCMinutes

Sets the minutes for a specified date according to universal time.

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

Syntax
setUTCMinutes(minutesValue[, secondsValue[, msValue]])

Parameters

minutesValue

An integer between 0 and 59, representing the minutes.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (48 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

secondsValue

An integer between 0 and 59, representing the seconds. If
you specify the secondsValue parameter, you must also
specify the minutesValue.

msValue

A number between 0 and 999, representing the milliseconds.
If you specify the msValue parameter, you must also specify
the minutesValue and secondsValue.

Description
If you do not specify the secondsValue and msValue parameters, the values returned
from getUTCSeconds and getUTCMilliseconds methods are used.

If a parameter you specify is outside of the expected range, setUTCMinutes attempts to
update the date information in the Date object accordingly. For example, if you use 100
for secondsValue, the minutes (minutesValue) will be incremented by 1 (minutesValue
+ 1), and 40 will be used for seconds.

Examples
theBigDay = new Date();
theBigDay.setUTCMinutes(43);

See also
Date.getUTCMinutes , Date.setMinutes

setUTCMonth

Sets the month for a specified date according to universal time.

Method of Date

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (49 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Implemented in JavaScript 1.3

ECMA version ECMA-262

Syntax
setUTCMonth(monthValue[, dayValue])

Parameters

monthValue

An integer between 0 and 11, representing the months January
through December.

dayValue

An integer from 1 to 31, representing the day of the month.

Description
If you do not specify the dayValue parameter, the value returned from the getUTCDate
method is used.

If a parameter you specify is outside of the expected range, setUTCMonth attempts to
update the date information in the Date object accordingly. For example, if you use 15
for monthValue, the year will be incremented by 1 (year + 1), and 3 will be used for
month.

Examples
theBigDay = new Date();
theBigDay.setUTCMonth(11);

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (50 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

See also
Date.getUTCMonth , Date.setMonth

setUTCSeconds

Sets the seconds for a specified date according to universal time.

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

Syntax
setUTCSeconds(secondsValue[, msValue])

Parameters

secondsValue

An integer between 0 and 59.

msValue

A number between 0 and 999, representing the milliseconds.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (51 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Description
If you do not specify the msValue parameter, the value returned from the
getUTCMilliseconds methods is used.

If a parameter you specify is outside of the expected range, setUTCSeconds attempts to
update the date information in the Date object accordingly. For example, if you use 100
for secondsValue, the minutes stored in the Date object will be incremented by 1, and
40 will be used for seconds.

Examples
theBigDay = new Date();
theBigDay.setUTCSeconds(20);

See also
Date.getUTCSeconds , Date.setSeconds

setYear

Sets the year for a specified date according to local time.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

Deprecated in JavaScript 1.3.

ECMA version ECMA-262

Syntax
setYear(yearValue)

Parameters
file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (52 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

yearValue

An integer.

Description
setYear is no longer used and has been replaced by the setFullYear method.

If yearValue is a number between 0 and 99 (inclusive), then the year for
dateObjectName is set to 1900 + yearValue. Otherwise, the year for dateObjectName is
set to yearValue.

To take into account years before and after 2000, you should use setFullYear instead of
setYear so that the year is specified in full.

Examples
Note that there are two ways to set years in the 20th century.

Example 1. The year is set to 1996.

theBigDay.setYear(96)

Example 2. The year is set to 1996.

theBigDay.setYear(1996)

Example 3. The year is set to 2000.

theBigDay.setYear(2000)

See also
Date.getYear, Date.setFullYear, Date.setUTCFullYear

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (53 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

toGMTString

Converts a date to a string, using the Internet GMT conventions.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

Deprecated in JavaScript 1.3.

ECMA version ECMA-262

Syntax
toGMTString()

Parameters
None

Description
toGMTString is no longer used and has been replaced by the toUTCString method.

The exact format of the value returned by toGMTString varies according to the
platform.

You should use Date.toUTCString instead of toGMTSTring.

Examples
In the following example, today is a Date object:

today.toGMTString()

In this example, the toGMTString method converts the date to GMT (UTC) using the
operating system's time-zone offset and returns a string value that is similar to the

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (54 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

following form. The exact format depends on the platform.

Mon, 18 Dec 1995 17:28:35 GMT

See also
Date.toLocaleString, Date.toUTCString

toLocaleString

Converts a date to a string, using the current locale's conventions.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
toLocaleString()

Parameters
None

Description
The toLocaleString method relies on the underlying operating system in formatting
dates. It converts the date to a string using the formatting convention of the operating
system where the script is running. For example, in the United States, the month appears
before the date (04/15/98), whereas in Germany the date appears before the month
(15.04.98). If the operating system is not year-2000 compliant and does not use the full
year for years before 1900 or over 2000, toLocaleString returns a string that is not year-
2000 compliant. toLocaleString behaves similarly to toString when converting a year
that the operating system does not properly format.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (55 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Methods such as getHours, getMinutes, and getSeconds give more portable results than
toLocaleString.

Examples
In the following example, today is a Date object:

today = new Date(95,11,18,17,28,35) //months are represented by 0 to 11
today.toLocaleString()

In this example, toLocaleString returns a string value that is similar to the following
form. The exact format depends on the platform.

12/18/95 17:28:35

See also
Date.toGMTString, Date.toUTCString

toLocaleDateString

Converts a date to a string, returning the "date" portion using the current locale's
conventions.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
toLocaleDateString()

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (56 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Parameters
None

Description
The toLocaleDateString method relies on the underlying operating system in formatting
dates. It converts the date to a string using the formatting convention of the operating
system where the script is running. For example, in the United States, the month appears
before the date (04/15/98), whereas in Germany the date appears before the month
(15.04.98). If the operating system is not year-2000 compliant and does not use the full
year for years before 1900 or over 2000, toLocaleDateString returns a string that is not
year-2000 compliant. toLocaleDateString behaves similarly to toString when converting
a year that the operating system does not properly format.

Methods such as getHours, getMinutes, and getSeconds give more portable results than
toLocaleDateString.

Examples
In the following example, today is a Date object:

today = new Date(95,11,18,17,28,35) //months are represented by 0 to 11
today.toLocaleDateString()

In this example, toLocaleDateString returns a string value that is similar to the
following form. The exact format depends on the platform.

12/18/95

See also
Date.toGMTString, Date.toUTCString

toLocaleTimeString

Converts a date to a string, returning the "date" portion using the current locale's
conventions.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (57 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
toLocaleTimeString()

Parameters
None

Description
The toLocaleTimeString method relies on the underlying operating system in formatting
dates. It converts the date to a string using the formatting convention of the operating
system where the script is running. For example, in the United States, the month appears
before the date (04/15/98), whereas in Germany the date appears before the month
(15.04.98). If the operating system is not year-2000 compliant and does not use the full
year for years before 1900 or over 2000, toLocaleTimeString returns a string that is not
year-2000 compliant. toLocaleTimeString behaves similarly to toString when
converting a year that the operating system does not properly format.

Methods such as getHours, getMinutes, and getSeconds give more portable results than
toLocaleTimeString.

Examples
In the following example, today is a Date object:

today = new Date(95,11,18,17,28,35) //months are represented by 0 to 11
today.toLocaleTimeString()

In this example, toLocaleTimeString returns a string value that is similar to the
following form. The exact format depends on the platform.

17:28:35

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (58 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

See also
Date.toGMTString, Date.toUTCString

toSource

Returns a string representing the source code of the object.

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

Syntax
toSource()

Parameters
None

Description
The toSource method returns the following values:

●

● For the built-in Date object, toSource returns the following string indicating that
the source code is not available:

 function Date() {
 [native code]
 }

● For instances of Date, toSource returns a string representing the source code.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (59 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

This method is usually called internally by JavaScript and not explicitly in code.

See also
Object.toSource

toString

Returns a string representing the specified Date object.

Method of Date

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Syntax
toString()

Parameters
None.

Description
The Date object overrides the toString method of the Object object; it does not inherit
Object.toString. For Date objects, the toString method returns a string representation of
the object.

JavaScript calls the toString method automatically when a date is to be represented as a
text value or when a date is referred to in a string concatenation.

Examples

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (60 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

The following example assigns the toString value of a Date object to myVar:

x = new Date();
myVar=x.toString(); //assigns a value to myVar similar to:
 //Mon Sep 28 14:36:22 GMT-0700 (Pacific Daylight Time) 1998

See also
Object.toString

toUTCString

Converts a date to a string, using the universal time convention.

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

Syntax
toUTCString()

Parameters
None

Description
The value returned by toUTCString is a readable string formatted according to UTC
convention. The format of the return value may vary according to the platform.

Examples
var UTCstring;

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (61 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Today = new Date();
UTCstring = Today.toUTCString();

See also
Date.toLocaleString, Date.toUTCString

UTC

Returns the number of milliseconds in a Date object since January 1, 1970, 00:00:00,
universal time.

Method of Date

Static

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.3: added ms parameter.

ECMA version ECMA-262

Syntax
Date.UTC(year, month[, day[, hrs[, min[, sec[, ms]]]]])

Parameters

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (62 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

year

A year after 1900.

month

An integer between 0 and 11 representing the month.

date

An integer between 1 and 31 representing the day of the month.

hrs

An integer between 0 and 23 representing the hours.

min

An integer between 0 and 59 representing the minutes.

sec

An integer between 0 and 59 representing the seconds.

ms

An integer between 0 and 999 representing the milliseconds.

Description
UTC takes comma-delimited date parameters and returns the number of milliseconds
between January 1, 1970, 00:00:00, universal time and the time you specified.

You should specify a full year for the year; for example, 1998. If a year between 0 and
99 is specified, the method converts the year to a year in the 20th century (1900 + year);
for example, if you specify 95, the year 1995 is used.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (63 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

The UTC method differs from the Date constructor in two ways.

●

● Date.UTC uses universal time instead of the local time.

● Date.UTC returns a time value as a number instead of creating a Date object.

If a parameter you specify is outside of the expected range, the UTC method updates the
other parameters to allow for your number. For example, if you use 15 for month, the
year will be incremented by 1 (year + 1), and 3 will be used for the month.

Because UTC is a static method of Date, you always use it as Date.UTC(), rather than
as a method of a Date object you created.

Examples
The following statement creates a Date object using GMT instead of local time:

gmtDate = new Date(Date.UTC(96, 11, 1, 0, 0, 0))

See also
Date.parse

valueOf

Returns the primitive value of a Date object.

Method of Date

Implemented in JavaScript 1.1

ECMA version ECMA-262

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (64 of 65) [9/16/2004 9:54:26 AM]

Core JavaScript Reference 1.5:

Syntax
valueOf()

Parameters
None

Description
The valueOf method of Date returns the primitive value of a Date object as a number
data type, the number of milliseconds since midnight 01 January, 1970 UTC.

This method is usually called internally by JavaScript and not explicitly in code.

Examples
x = new Date(56,6,17);
myVar=x.valueOf() //assigns -424713600000 to myVar

See also
Object.valueOf

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated May 19, 2003

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/date.html (65 of 65) [9/16/2004 9:54:26 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5:

Previous Contents Index Next

Core JavaScript Reference 1.5

Function

xxx I believe that I have removed all client-specific examples from this file.

Specifies a string of JavaScript code to be compiled as a function.

Core object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2: added arity, arguments.callee properties;
added ability to nest functions.

JavaScript 1.3: added apply, call, and toSource methods;
deprecated arguments.caller property.

JavaScript 1.4: deprecated arguments, arguments.callee,
arguments.length, and arity properties (arguments
remains a variable local to a function rather than a
property of Function).

ECMA version ECMA-262

Created by
The Function constructor:

new Function ([arg1[, arg2[, ... argN]],] functionBody)

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (1 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

The function statement (see function for details):

function name([param[, param[, ... param]]]) {
 statements
}

Parameters

arg1, arg2, ... argN

Names to be used by the function as formal argument
names. Each must be a string that corresponds to a valid
JavaScript identifier; for example "x" or "theValue".

functionBody

A string containing the JavaScript statements
comprising the function definition.

name

The function name.

param

The name of an argument to be passed to the function.
A function can have up to 255 arguments.

statements

The statements comprising the body of the function.

Description
Function objects created with the Function constructor are evaluated each time they are
used. This is less efficient than declaring a function and calling it within your code,
because declared functions are compiled.

To return a value, the function must have a return statement that specifies the value to

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (2 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

return.

All parameters are passed to functions by value; the value is passed to the function, but
if the function changes the value of the parameter, this change is not reflected globally
or in the calling function. However, if you pass an object as a parameter to a function
and the function changes the object's properties, that change is visible outside the
function, as shown in the following example:

function myFunc(theObject) {
 theObject.make="Toyota"
}

mycar = {make:"Honda", model:"Accord", year:1998}
x=mycar.make // returns Honda
myFunc(mycar) // pass object mycar to the function
y=mycar.make // returns Toyota (prop was changed by the function)

The this keyword does not refer to the currently executing function, so you must refer to
Function objects by name, even within the function body.

Accessing a function's arguments with the arguments array. You can refer to a
function's arguments within the function by using the arguments array. See arguments.

Specifying arguments with the Function constructor. The following code creates a
Function object that takes two arguments.

var multiply = new Function("x", "y", "return x * y")

The arguments "x" and "y" are formal argument names that are used in the function
body, "return x * y".

The preceding code assigns a function to the variable multiply. To call the Function
object, you can specify the variable name as if it were a function, as shown in the
following examples.

var theAnswer = multiply(7,6)

var myAge = 50
if (myAge >=39) {myAge=multiply (myAge,.5)}

Assigning a function to a variable with the Function constructor. Suppose you
create the variable multiply using the Function constructor, as shown in the preceding
section:

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (3 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

var multiply = new Function("x", "y", "return x * y")

This is similar to declaring the following function:

function multiply(x,y) {
 return x*y
}

Assigning a function to a variable using the Function constructor is similar to declaring
a function with the function statement, but they have differences:

●

● When you assign a function to a variable using var multiply = new
Function("..."), multiply is a variable for which the current value is a reference to
the function created with new Function().

● When you create a function using function multiply() {...}, multiply is not a
variable, it is the name of a function.

Nesting functions. You can nest a function within a function. The nested (inner)
function is private to its containing (outer) function:

●

● The inner function can be accessed only from statements in the outer function.

● The inner function can use the arguments and variables of the outer function.
The outer function cannot use the arguments and variables of the inner function.

The following example shows nested functions:

function addSquares (a,b) {
 function square(x) {
 return x*x
 }
 return square(a) + square(b)
}
a=addSquares(2,3) // returns 13
b=addSquares(3,4) // returns 25
c=addSquares(4,5) // returns 41

When a function contains a nested function, you can call the outer function and specify
arguments for both the outer and inner function:

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (4 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

function outside(x) {
 function inside(y) {
 return x+y
 }
 return inside
}
result=outside(3)(5) // returns 8

Specifying an event handler with a Function object. The following code assigns a
function to a window's onFocus event handler (the event handler must be spelled in all
lowercase):

window.onfocus = new Function("document.bgColor='antiquewhite'")

If a function is assigned to a variable, you can assign the variable to an event handler.
The following code assigns a function to the variable setBGColor.

var setBGColor = new Function("document.bgColor='antiquewhite'")

You can use this variable to assign a function to an event handler in either of the
following ways:

document.form1.colorButton.onclick=setBGColor

<INPUT NAME="colorButton" TYPE="button"
 VALUE="Change background color"
 onClick="setBGColor()">

Once you have a reference to a Function object, you can use it like a function and it will
convert from an object to a function:

window.onfocus()

Event handlers do not take arguments, so you cannot declare any arguments in a
Function constructor for an event handler. For example, you cannot call the function
multiply by setting a button's onclick property as follows:

document.form1.button1.onclick=multFun(5,10)

Backward Compatibility

JavaScript 1.1 and earlier versions. You cannot nest a function statement in another

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (5 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

statement or in itself.

Property Summary

Property Description

arguments

An array corresponding to the arguments passed to a
function.

arguments.callee

Specifies the function body of the currently executing
function.

arguments.caller

Specifies the name of the function that invoked the
currently executing function.

arguments.length

Specifies the number of arguments passed to the
function.

arity

Specifies the number of arguments expected by the
function.

constructor

Specifies the function that creates an object's prototype.

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (6 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

length

Specifies the number of arguments expected by the
function.

prototype

Allows the addition of properties to a Function object.

Method Summary

Method Description

apply

Allows you to apply a method of another object in the context of
a different object (the calling object).

call

Allows you to call (execute) a method of another object in the
context of a different object (the calling object).

toSource

Returns a string representing the source code of the function.
Overrides the Object.toSource method.

toString

Returns a string representing the source code of the function.
Overrides the Object.toString method.

valueOf

Returns a string representing the source code of the function.
Overrides the Object.valueOf method.

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (7 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

Examples
Example 1. The following function returns a string containing the formatted
representation of a number padded with leading zeros.

// This function returns a string padded with leading zeros
function padZeros(num, totalLen) {
 var numStr = num.toString() // Initialize return value
 // as string
 var numZeros = totalLen - numStr.length // Calculate no. of zeros
 if (numZeros > 0) {
 for (var i = 1; i <= numZeros; i++) {
 numStr = "0" + numStr
 }
 }
 return numStr
}

The following statements call the padZeros function.

result=padZeros(42,4) // returns "0042"
result=padZeros(42,2) // returns "42"
result=padZeros(5,4) // returns "0005"

Example 2. You can determine whether a function exists by comparing the function
name to null. In the following example, func1 is called if the function noFunc does not
exist; otherwise func2 is called. Notice that the window name is needed when referring
to the function name noFunc.

if (window.noFunc == null)
 func1()
else func2()

Example 3. The following example creates onFocus and onBlur event handlers for a
frame. This code exists in the same file that contains the FRAMESET tag. Note that this
is the only way to create onFocus and onBlur event handlers for a frame, because you
cannot specify the event handlers in the FRAME tag.

frames[0].onfocus = new Function("document.bgColor='antiquewhite'")
frames[0].onblur = new Function("document.bgColor='lightgrey'")

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (8 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

apply

This feature is not in the ECMA specification that corresponds to JavaScript 1.3, but is
expected in the next version.

Allows you to apply a method of another object in the context of a different object (the
calling object).

Method of Function

Implemented in JavaScript 1.3

Syntax
apply(thisArg[, argArray])

Parameters

thisArg

Parameter for the calling object

argArray

An argument array for the object

Description
You can assign a different this object when calling an existing function. this refers to
the current object, the calling object. With apply, you can write a method once and then
inherit it in another object, without having to rewrite the method for the new object.

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (9 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

apply is very similar to call, except for the type of arguments it supports. You can use
an arguments array instead of a named set of parameters. With apply, you can use an
array literal, for example, apply(this, [name, value]), or an Array object, for example,
apply(this, new Array(name, value)).

You can also use arguments for the argArray parameter. arguments is a local variable of
a function. It can be used for all unspecified arguments of the called object. Thus, you
do not have to know the arguments of the called object when you use the apply method.
You can use arguments to pass all the arguments to the called object. The called object
is then responsible for handling the arguments.

Examples
You can use apply to chain constructors for an object, similar to Java. In the following
example, the constructor for the product object is defined with two parameters, name
and value. Another object, prod_dept, initializes its unique variable (dept) and calls the
constructor for product in its constructor to initialize the other variables. In this
example, the parameter arguments is used for all arguments of the product object's
constructor.

function product(name, value){
 this.name = name;
 if(value > 1000)
 this.value = 999;
 else
 this.value = value;
}

function prod_dept(name, value, dept){
 this.dept = dept;
 product.apply(product, arguments);
}

prod_dept.prototype = new product();

// since 5 is less than 100 value is set
cheese = new prod_dept("feta", 5, "food");

// since 5000 is above 1000, value will be 999
car = new prod_dept("honda", 5000, "auto");

See also
file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (10 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

Function.call

arguments

An array corresponding to the arguments passed to a function.

Local variable of All function objects

Property of Function (deprecated)

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2: added arguments.callee property.

JavaScript 1.3: deprecated arguments.caller property;
removed support for argument names and local variable
names as properties of the arguments array.

JavaScript 1.4: deprecated arguments, arguments.callee,
and arguments.length as properties of Function; retained
arguments as a local variable of a function and
arguments.callee and arguments.length as properties of
this variable.

ECMA version ECMA-262

Description
The arguments array is a local variable available within all function objects; arguments
as a property of Function is no longer used.

You can refer to a function's arguments within the function by using the arguments
array. This array contains an entry for each argument passed to the function. For
example, if a function is passed three arguments, you can refer to the arguments as

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (11 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

follows:

arguments[0]
arguments[1]
arguments[2]

The arguments array is available only within a function body. Attempting to access the
arguments array outside a function declaration results in an error.

You can use the arguments array if you call a function with more arguments than it is
formally declared to accept. This technique is useful for functions that can be passed a
variable number of arguments. You can use arguments.length to determine the number
of arguments passed to the function, and then process each argument by using the
arguments array. (To determine the number of arguments declared when a function was
defined, use the Function.length property.)

The arguments array has the following properties:

Property Description

arguments.callee Specifies the function body of the currently executing
function.

arguments.caller Specifies the name of the function that invoked the
currently executing function. (Deprecated)

arguments.length Specifies the number of arguments passed to the
function.

Backward Compatibility

JavaScript 1.3 and earlier versions. In addition to being available as a local variable,
the arguments array is also a property of the Function object and can be preceded by the
function name. For example, if a function myFunc is passed three arguments named

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (12 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

arg1, arg2, and arg3, you can refer to the arguments as follows:

myFunc.arguments[0]
myFunc.arguments[1]
myFunc.arguments[2]

JavaScript 1.1 and 1.2. The following features, which were available in JavaScript 1.1
and JavaScript 1.2, have been removed:

●

● Each local variable of a function is a property of the arguments array. For
example, if a function myFunc has a local variable named myLocalVar, you can
refer to the variable as arguments.myLocalVar.

● Each formal argument of a function is a property of the arguments array. For
example, if a function myFunc has two arguments named arg1 and arg2, you can
refer to the arguments as arguments.arg1 and arguments.arg2. (You can also
refer to them as arguments[0] and arguments[1].)

Examples
Example 1. This example defines a function that concatenates several strings. The only
formal argument for the function is a string that specifies the characters that separate the
items to concatenate. The function is defined as follows:

function myConcat(separator) {
 result="" // initialize list
 // iterate through arguments
 for (var i=1; i<arguments.length; i++) {
 result += arguments[i] + separator
 }
 return result
}

You can pass any number of arguments to this function, and it creates a list using each
argument as an item in the list.

// returns "red, orange, blue, "
myConcat(", ","red","orange","blue")

// returns "elephant; giraffe; lion; cheetah;"
myConcat("; ","elephant","giraffe","lion", "cheetah")

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (13 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

// returns "sage. basil. oregano. pepper. parsley. "
myConcat(". ","sage","basil","oregano", "pepper", "parsley")

Example 2. This example defines a function that creates HTML lists. The only formal
argument for the function is a string that is "U" if the list is to be unordered (bulleted),
or "O" if the list is to be ordered (numbered). The function is defined as follows:

function list(type) {
 document.write("<" + type + "L>") // begin list
 // iterate through arguments
 for (var i=1; i<arguments.length; i++) {
 document.write("" + arguments[i])
 }
 document.write("</" + type + "L>") // end list
}

You can pass any number of arguments to this function, and it displays each argument
as an item in the type of list indicated. For example, the following call to the function

list("U", "One", "Two", "Three")

results in this output:

One
Two
Three

In server-side JavaScript, you can display the same output by calling the write function
instead of using document.write.

arguments.callee

Specifies the function body of the currently executing function.

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (14 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

Property of arguments local variable; Function (deprecated)

Implemented in JavaScript 1.2

JavaScript 1.4: Deprecated callee as a property of
Function.arguments, retained it as a property of a
function's local arguments variable.

ECMA version ECMA-262

Description
arguments.callee is a property of the arguments local variable available within all
function objects; arguments.callee as a property of Function is no longer used.

The callee property is available only within the body of a function.

The this keyword does not refer to the currently executing function. Use the callee
property to refer to a function within the function body.

Examples
The following function returns the value of the function's callee property.

function myFunc() {
 return arguments.callee
}

The following value is returned:

function myFunc() { return arguments.callee; }

See also
Function.arguments

arguments.caller

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (15 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

Specifies the name of the function that invoked the currently executing function.

Property of Function

Implemented in JavaScript 1.1, NES 2.0

Deprecated in JavaScript 1.3

Description
caller is no longer used.

The caller property is available only within the body of a function.

If the currently executing function was invoked by the top level of a JavaScript
program, the value of caller is null.

The this keyword does not refer to the currently executing function, so you must refer to
functions and Function objects by name, even within the function body.

The caller property is a reference to the calling function, so

●

● If you use it in a string context, you get the result of calling
functionName.toString. That is, the decompiled canonical source form of the
function.

● You can also call the calling function, if you know what arguments it might
want. Thus, a called function can call its caller without knowing the name of the
particular caller, provided it knows that all of its callers have the same form and
fit, and that they will not call the called function again unconditionally (which
would result in infinite recursion).

Examples
The following code checks the value of a function's caller property.

function myFunc() {
file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (16 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

 if (arguments.caller == null) {
 return ("The function was called from the top!")
 } else return ("This function's caller was " + arguments.caller)
}

See also
Function.arguments

arguments.length

Specifies the number of arguments passed to the function.

Property of arguments local variable; Function (deprecated)

Implemented in JavaScript 1.1

JavaScript 1.4: Deprecated length as a property of
Function.arguments, retained it as a property of a
function's local arguments variable.

ECMA version ECMA-262

Description
arguments.length is a property of the arguments local variable available within all
function objects; arguments.length as a property of Function is no longer used.

arguments.length provides the number of arguments actually passed to a function. By
contrast, the Function.length property indicates how many arguments a function
expects.

Example
The following example demonstrates the use of Function.length and arguments.length.

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (17 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

function addNumbers(x,y){
 if (arguments.length == addNumbers.length) {
 return (x+y)
 }
 else return 0
}

If you pass more than two arguments to this function, the function returns 0:

result=addNumbers(3,4,5) // returns 0
result=addNumbers(3,4) // returns 7
result=addNumbers(103,104) // returns 207

See also
Function.arguments

arity

Specifies the number of arguments expected by the function.

Property of Function

Implemented in JavaScript 1.2, NES 3.0

Deprecated in JavaScript 1.4.

Description
arity is no longer used and has been replaced by the length property.

arity is external to the function, and indicates how many arguments a function expects.
By contrast, arguments.length provides the number of arguments actually passed to a
function.

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (18 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

Example
The following example demonstrates the use of arity and arguments.length.

function addNumbers(x,y){
 if (arguments.length == addNumbers.length) {
 return (x+y)
 }
 else return 0
}

If you pass more than two arguments to this function, the function returns 0:

result=addNumbers(3,4,5) // returns 0
result=addNumbers(3,4) // returns 7
result=addNumbers(103,104) // returns 207

See also
arguments.length, Function.length

call

This feature is not in the ECMA specification that corresponds to JavaScript 1.3, but is
expected in the next version.

Allows you to call (execute) a method of another object in the context of a different
object (the calling object).

Method of Function

Implemented in JavaScript 1.3

Syntax
call(thisArg[, arg1[, arg2[, ...]]])

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (19 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

Parameters

thisArg

Parameter for the calling object

arg1, arg2, ...

Arguments for the object

Description
You can assign a different this object when calling an existing function. this refers to
the current object, the calling object.

With call, you can write a method once and then inherit it in another object, without
having to rewrite the method for the new object.

Examples
You can use call to chain constructors for an object, similar to Java. In the following
example, the constructor for the product object is defined with two parameters, name
and value. Another object, prod_dept, initializes its unique variable (dept) and calls the
constructor for product in its constructor to initialize the other variables.

function product(name, value){
 this.name = name;
 if(value > 1000)
 this.value = 999;
 else
 this.value = value;
}

function prod_dept(name, value, dept){
 this.dept = dept;
 product.call(this, name, value);

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (20 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

}

prod_dept.prototype = new product();

// since 5 is less than 100 value is set
cheese = new prod_dept("feta", 5, "food");

// since 5000 is above 1000, value will be 999
car = new prod_dept("honda", 5000, "auto");

See also
Function.apply

constructor

Specifies the function that creates an object's prototype. Note that the value of this
property is a reference to the function itself, not a string containing the function's name.

Property of Function

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Description
See Object.constructor.

length

Specifies the number of arguments expected by the function.

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (21 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

Property of Function

Implemented in JavaScript 1.1

ECMA version ECMA-262

Description
length is external to a function, and indicates how many arguments the function expects.
By contrast, arguments.length is local to a function and provides the number of
arguments actually passed to the function.

Example
See the example for arguments.length.

See also
arguments.length

prototype

A value from which instances of a particular class are created. Every object that can be
created by calling a constructor function has an associated prototype property.

Property of Function

Implemented in JavaScript 1.1, NES 2.0

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (22 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

ECMA version ECMA-262

Description
You can add new properties or methods to an existing class by adding them to the
prototype associated with the constructor function for that class. The syntax for adding a
new property or method is:

fun.prototype.name = value

where

fun

The name of the constructor function object you want to change.

name

The name of the property or method to be created.

value

The value initially assigned to the new property or method.

If you add a property to the prototype for an object, then all objects created with that
object's constructor function will have that new property, even if the objects existed
before you created the new property. For example, assume you have the following
statements:

var array1 = new Array();
var array2 = new Array(3);
Array.prototype.description=null;
array1.description="Contains some stuff"
array2.description="Contains other stuff"

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (23 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

After you set a property for the prototype, all subsequent objects created with Array will
have the property:

anotherArray=new Array()
anotherArray.description="Currently empty"

Example
The following example creates a method, str_rep, and uses the statement
String.prototype.rep = str_rep to add the method to all String objects. All objects created
with new String() then have that method, even objects already created. The example
then creates an alternate method and adds that to one of the String objects using the
statement s1.rep = fake_rep. The str_rep method of the remaining String objects is not
altered.

var s1 = new String("a")
var s2 = new String("b")
var s3 = new String("c")

// Create a repeat-string-N-times method for all String objects
function str_rep(n) {
 var s = "", t = this.toString()
 while (--n >= 0) s += t
 return s
}

String.prototype.rep = str_rep

s1a=s1.rep(3) // returns "aaa"
s2a=s2.rep(5) // returns "bbbbb"
s3a=s3.rep(2) // returns "cc"

// Create an alternate method and assign it to only one String variable
function fake_rep(n) {
 return "repeat " + this + " " + n + " times."
}

s1.rep = fake_rep
s1b=s1.rep(1) // returns "repeat a 1 times."
s2b=s2.rep(4) // returns "bbbb"
s3b=s3.rep(6) // returns "cccccc"

The function in this example also works on String objects not created with the String

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (24 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

constructor. The following code returns "zzz".

"z".rep(3)

toSource

This feature is not in the ECMA specification that corresponds to JavaScript 1.3, but is
expected in the next version.

Returns a string representing the source code of the function.

Method of Function

Implemented in JavaScript 1.3

Syntax
toSource()

Parameters
None

Description
The toSource method returns the following values:

●

● For the built-in Function object, toSource returns the following string indicating
that the source code is not available:

 function Function() {
 [native code]
 }

● For custom functions, toSource returns the JavaScript source that defines the

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (25 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

object as a string.

This method is usually called internally by JavaScript and not explicitly in code. You
can call toSource while debugging to examine the contents of an object.

See also
Function.toString, Object.valueOf

toString

Returns a string representing the source code of the function.

Method of Function

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Syntax
toString()

Parameters
None.

Description
The Function object overrides the toString method of the Object object; it does not
inherit Object.toString. For Function objects, the toString method returns a string
representation of the object.

JavaScript calls the toString method automatically when a Function is to be represented
as a text value or when a Function is referred to in a string concatenation.

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (26 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

For Function objects, the built-in toString method decompiles the function back into the
JavaScript source that defines the function. This string includes the function keyword,
the argument list, curly braces, and function body.

For example, assume you have the following code that defines the Dog object type and
creates theDog, an object of type Dog:

function Dog(name,breed,color,sex) {
 this.name=name
 this.breed=breed
 this.color=color
 this.sex=sex
}

theDog = new Dog("Gabby","Lab","chocolate","girl")

Any time Dog is used in a string context, JavaScript automatically calls the toString
function, which returns the following string:

function Dog(name, breed, color, sex) { this.name = name; this.breed = breed; this.color
= color; this.sex = sex; }

See also
Object.toString

valueOf

Returns a string representing the source code of the function.

Method of Function

Implemented in JavaScript 1.1

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (27 of 28) [9/16/2004 9:54:30 AM]

Core JavaScript Reference 1.5:

ECMA version ECMA-262

Syntax
valueOf()

Parameters
None

Description
The valueOf method returns the following values:

●

● For the built-in Function object, valueOf returns the following string indicating
that the source code is not available:

 function Function() {
 [native code]
 }

● For custom functions, toSource returns the JavaScript source that defines the
object as a string. The method is equivalent to the toString method of the
function.

This method is usually called internally by JavaScript and not explicitly in code.

See also
Function.toString, Object.valueOf

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/function.html (28 of 28) [9/16/2004 9:54:30 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5:

Previous Contents Index Next

Core JavaScript Reference 1.5

java

A top-level object used to access any Java class in the package java.*.

Core object

Implemented in JavaScript 1.1, NES 2.0

Created by
The java object is a top-level, predefined JavaScript object. You can automatically
access it without using a constructor or calling a method.

Description
The java object is a convenience synonym for the property Packages.java.

See also
Packages, Packages.java

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%20Do.../Acrobat/JavaScript/Netscape/JS15/Refrence/java.html [9/16/2004 9:54:33 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5:

Previous Contents Index Next

Core JavaScript Reference 1.5

JavaArray

A wrapped Java array accessed from within JavaScript code is a member of the type
JavaArray.

Core object

Implemented in JavaScript 1.1, NES 2.0

Created by
Any Java method which returns an array. In addition, you can create a JavaArray with
an arbitrary data type using the newInstance method of the Array class:

public static Object newInstance(Class componentType,
 int length)
 throws NegativeArraySizeException

Description
The JavaArray object is an instance of a Java array that is created in or passed to
JavaScript. JavaArray is a wrapper for the instance; all references to the array instance
are made through the JavaArray.

In JavaScript 1.4 and later, the componentType parameter is either a JavaClass object
representing the type of the array or class object, such as one returned by
java.lang.Class.forName. In JavaScript 1.3 and earlier, componentType must be a class
object.

Use zero-based indexes to access the elements in a JavaArray object, just as you do to
access elements in an array in Java. For example:

file:///C|/Documents%20and%20Settings/george/My%2...t/JavaScript/Netscape/JS15/Refrence/javarray.html (1 of 5) [9/16/2004 9:54:35 AM]

Core JavaScript Reference 1.5:

var javaString = new java.lang.String("Hello world!");
var byteArray = javaString.getBytes();
byteArray[0] // returns 72
byteArray[1] // returns 101

Any Java data brought into JavaScript is converted to JavaScript data types. When the
JavaArray is passed back to Java, the array is unwrapped and can be used by Java code.
See the Core JavaScript Guide for more information about data type conversions.

In JavaScript 1.4 and later, the methods of java.lang.Object are inherited by JavaArray.

Backward compatibility

JavaScript 1.3 and earlier. The methods of java.lang.Object are not inherited by
JavaArray. In addition, the toString method is inherited from the Object object and
returns the following value:

[object JavaArray]

You must specify a class object, such as one returned by java.lang.Object.forName, for
the componentType parameter of newInstance when you use this method to create an
array. You cannot use a JavaClass object for the componentType parameter.

Property Summary

Property Description

length

The number of elements in the Java array represented by
JavaArray.

Method Summary

file:///C|/Documents%20and%20Settings/george/My%2...t/JavaScript/Netscape/JS15/Refrence/javarray.html (2 of 5) [9/16/2004 9:54:35 AM]

Core JavaScript Reference 1.5:

Method Description

toString

In JavaScript 1.4, this method is overridden by the inherited
method java.lang.Object.toString.

In JavaScript 1.3 and earlier, this method returns a string
identifying the object as a JavaArray.

In JavaScript 1.4 and later, JavaArray also inherits methods from the Java array
superclass, java.lang.Object.

Examples
Example 1. Instantiating a JavaArray in JavaScript.

In this example, the JavaArray byteArray is created by the java.lang.String.getBytes
method, which returns an array.

var javaString = new java.lang.String("Hello world!");
var byteArray = javaString.getBytes();

Example 2. Instantiating a JavaArray in JavaScript with the newInstance method.

In JavaScript 1.4, you can use a JavaClass object as the argument for the newInstance
method which creates the array, as shown in the following code:

var dogs = java.lang.reflect.Array.newInstance(java.lang.String, 5)

In JavaScript 1.1, use a class object returned by java.lang.Class.forName as the
argument for the newInstance method, as shown in the following code:

var dataType = java.lang.Class.forName("java.lang.String")
var dogs = java.lang.reflect.Array.newInstance(dataType, 5)

length

The number of elements in the Java array represented by the JavaArray object.

file:///C|/Documents%20and%20Settings/george/My%2...t/JavaScript/Netscape/JS15/Refrence/javarray.html (3 of 5) [9/16/2004 9:54:35 AM]

Core JavaScript Reference 1.5:

Property of JavaArray

Implemented in JavaScript 1.1, NES 2.0

Description
Unlike Array.length, JavaArray.length is a read-only property. You cannot change the
value of the JavaArray.length property because Java arrays have a fixed number of
elements.

See also
Array.length

toString

Returns a string representation of the JavaArray.

Method of JavaArray

Implemented in JavaScript 1.1, NES 2.0

Parameters
None

Description
Calls the method java.lang.Object.toString, which returns the value of the following
expression:

JavaArray.getClass().getName() + '@' +
 java.lang.Integer.toHexString(JavaArray.hashCode())

file:///C|/Documents%20and%20Settings/george/My%2...t/JavaScript/Netscape/JS15/Refrence/javarray.html (4 of 5) [9/16/2004 9:54:35 AM]

Core JavaScript Reference 1.5:

Backward compatibility

JavaScript 1.3 and earlier. The toString method is inherited from the Object object
and returns the following value:

[object JavaArray]

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%2...t/JavaScript/Netscape/JS15/Refrence/javarray.html (5 of 5) [9/16/2004 9:54:35 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5:

Previous Contents Index Next

Core JavaScript Reference 1.5

JavaClass

A JavaScript reference to a Java class.

Core object

Implemented in JavaScript 1.1, NES 2.0

Created by
A reference to the class name used with the Packages object:

Packages.JavaClass

where JavaClass is the fully-specified name of the object's Java class. The LiveConnect
java, sun, and netscape objects provide shortcuts for commonly used Java packages and
also create JavaClass objects.

Description
A JavaClass object is a reference to one of the classes in a Java package, such as
netscape.javascript.JSObject. A JavaPackage object is a reference to a Java package,
such as netscape.javascript. In JavaScript, the JavaPackage and JavaClass hierarchy
reflect the Java package and class hierarchy.

You can pass a JavaClass object to a Java method which requires an argument of type
java.lang.Class.

Backward compatibility

file:///C|/Documents%20and%20Settings/george/My%2...t/JavaScript/Netscape/JS15/Refrence/javclass.html (1 of 2) [9/16/2004 9:54:38 AM]

Core JavaScript Reference 1.5:

JavaScript 1.3 and earlier. You must create a wrapper around an instance of
java.lang.Class before you pass it as a parameter to a Java method-JavaClass objects are
not automatically converted to instances of java.lang.Class.

Property Summary
The properties of a JavaClass object are the static fields of the Java class.

Method Summary
The methods of a JavaClass object are the static methods of the Java class.

Examples
Example 1. In the following example, x is a JavaClass object referring to java.awt.Font.
Because BOLD is a static field in the Font class, it is also a property of the JavaClass
object.

x = java.awt.Font
myFont = x("helv",x.BOLD,10) // creates a Font object

The previous example omits the Packages keyword and uses the java synonym because
the Font class is in the java package.

Example 2. In the following example, the JavaClass object java.lang.String is passed as
an argument to the newInstance method which creates an array:

var cars = java.lang.reflect.Array.newInstance(java.lang.String, 15)

See also
JavaArray, JavaObject, JavaPackage, Packages

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%2...t/JavaScript/Netscape/JS15/Refrence/javclass.html (2 of 2) [9/16/2004 9:54:38 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5:

Previous Contents Index Next

Core JavaScript Reference 1.5

JavaObject

The type of a wrapped Java object accessed from within JavaScript code.

Core object

Implemented in JavaScript 1.1, NES 2.0

Created by
Any Java method which returns an object type. In addition, you can explicitly construct
a JavaObject using the object's Java constructor with the Packages keyword:

new Packages.JavaClass(parameterList)

where JavaClass is the fully-specified name of the object's Java class.

Parameters

parameterList

An optional list of parameters, specified by the constructor
in the Java class.

Description
The JavaObject object is an instance of a Java class that is created in or passed to

file:///C|/Documents%20and%20Settings/george/My%2...bat/JavaScript/Netscape/JS15/Refrence/javobj.html (1 of 3) [9/16/2004 9:54:40 AM]

Core JavaScript Reference 1.5:

JavaScript. JavaObject is a wrapper for the instance; all references to the class instance
are made through the JavaObject.

Any Java data brought into JavaScript is converted to JavaScript data types. When the
JavaObject is passed back to Java, it is unwrapped and can be used by Java code. See
the Core JavaScript Guide for more information about data type conversions.

Property Summary
Inherits public data members from the Java class of which it is an instance as properties.
It also inherits public data members from any superclass as properties.

Method Summary
Inherits public methods from the Java class of which it is an instance. The JavaObject
also inherits methods from java.lang.Object and any other superclass.

Examples
Example 1. Instantiating a Java object in JavaScript.

The following code creates the JavaObject theString, which is an instance of the class
java.lang.String:

var theString = new Packages.java.lang.String("Hello, world")

Because the String class is in the java package, you can also use the java synonym and
omit the Packages keyword when you instantiate the class:

var theString = new java.lang.String("Hello, world")

Example 2. Accessing methods of a Java object.

Because the JavaObject theString is an instance of java.lang.String, it inherits all the
public methods of java.lang.String. The following example uses the startsWith method
to check whether theString begins with "Hello".

var theString = new java.lang.String("Hello, world")
theString.startsWith("Hello") // returns true

Example 3. Accessing inherited methods.

Because getClass is a method of Object, and java.lang.String extends Object, the String

file:///C|/Documents%20and%20Settings/george/My%2...bat/JavaScript/Netscape/JS15/Refrence/javobj.html (2 of 3) [9/16/2004 9:54:40 AM]

Core JavaScript Reference 1.5:

class inherits the getClass method. Consequently, getClass is also a method of the
JavaObject which instantiates String in JavaScript.

var theString = new java.lang.String("Hello, world")
theString.getClass() // returns java.lang.String

See also
JavaArray, JavaClass, JavaPackage, Packages

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%2...bat/JavaScript/Netscape/JS15/Refrence/javobj.html (3 of 3) [9/16/2004 9:54:40 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5:

Previous Contents Index Next

Core JavaScript Reference 1.5

JavaPackage

A JavaScript reference to a Java package.

Core object

Implemented in JavaScript 1.1, NES 2.0

Created by
A reference to the package name used with the Packages keyword:

Packages.JavaPackage

where JavaPackage is the name of the object's Java package. If the package is in the
java, netscape, or sun packages, the Packages keyword is optional.

Description
In Java, a package is a collection of Java classes or other Java packages. For example,
the netscape package contains the package netscape.javascript; the netscape.javascript
package contains the classes JSObject and JSException.

In JavaScript, a JavaPackage is a reference to a Java package. For example, a reference
to netscape is a JavaPackage. netscape.javascript is both a JavaPackage and a property
of the netscape JavaPackage.

A JavaClass object is a reference to one of the classes in a package, such as
netscape.javascript.JSObject. The JavaPackage and JavaClass hierarchy reflect the Java
package and class hierarchy.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/javpkg.html (1 of 2) [9/16/2004 9:54:42 AM]

Core JavaScript Reference 1.5:

Although the packages and classes contained in a JavaPackage are its properties, you
cannot use a for...in statement to enumerate them as you can enumerate the properties of
other objects.

Property Summary
The properties of a JavaPackage are the JavaClass objects and any other JavaPackage
objects it contains.

Examples
Suppose the Redwood corporation uses the Java redwood package to contain various
Java classes that it implements. The following code creates the JavaPackage red:

var red = Packages.redwood

See also
JavaArray, JavaClass, JavaObject, Packages

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/javpkg.html (2 of 2) [9/16/2004 9:54:42 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5:

Previous Contents Index Next

Core JavaScript Reference 1.5

Math

A built-in object that has properties and methods for mathematical constants and
functions. For example, the Math object's PI property has the value of pi.

Core object

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Created by
The Math object is a top-level, predefined JavaScript object. You can automatically
access it without using a constructor or calling a method.

Description
All properties and methods of Math are static. You refer to the constant PI as Math.PI
and you call the sine function as Math.sin(x), where x is the method's argument.
Constants are defined with the full precision of real numbers in JavaScript.

It is often convenient to use the with statement when a section of code uses several
Math constants and methods, so you don't have to type "Math" repeatedly. For example,

with (Math) {
 a = PI * r*r
 y = r*sin(theta)
 x = r*cos(theta)
}

file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/math.html (1 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

Property Summary

Property Description

E

Euler's constant and the base of natural logarithms,
approximately 2.718.

LN2

Natural logarithm of 2, approximately 0.693.

LN10

Natural logarithm of 10, approximately 2.302.

LOG2E

Base 2 logarithm of E (approximately 1.442).

LOG10E

Base 10 logarithm of E (approximately 0.434).

PI

Ratio of the circumference of a circle to its diameter,
approximately 3.14159.

SQRT1_2

Square root of 1/2; equivalently, 1 over the square root of 2,
approximately 0.707.

file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/math.html (2 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

SQRT2

Square root of 2, approximately 1.414.

Method Summary

Method Description

abs

Returns the absolute value of a number.

acos

Returns the arccosine (in radians) of a number.

asin

Returns the arcsine (in radians) of a number.

atan

Returns the arctangent (in radians) of a number.

atan2

Returns the arctangent of the quotient of its arguments.

ceil

Returns the smallest integer greater than or equal to a number.

file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/math.html (3 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

cos

Returns the cosine of a number.

exp

Returns Enumber, where number is the argument, and E is Euler's
constant, the base of the natural logarithms.

floor

Returns the largest integer less than or equal to a number.

log

Returns the natural logarithm (base E) of a number.

max

Returns the greater of two numbers.

min

Returns the lesser of two numbers.

pow

Returns base to the exponent power, that is, base exponent.

random

Returns a pseudo-random number between 0 and 1.

file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/math.html (4 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

round

Returns the value of a number rounded to the nearest integer.

sin

Returns the sine of a number.

sqrt

Returns the square root of a number.

tan

Returns the tangent of a number.

In addition, this object inherits the watch and unwatch methods from Object.

abs

Returns the absolute value of a number.

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/math.html (5 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

Syntax
abs(x)

Parameters

x

A number

Examples
The following function returns the absolute value of the variable x:

function getAbs(x) {
 return Math.abs(x)
}

Description
Because abs is a static method of Math, you always use it as Math.abs(), rather than as a
method of a Math object you created.

acos

Returns the arccosine (in radians) of a number.

Method of Math

Static

file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/math.html (6 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
acos(x)

Parameters

x

A number

Description
The acos method returns a numeric value between 0 and pi radians. If the value of
number is outside this range, it returns NaN.

Because acos is a static method of Math, you always use it as Math.acos(), rather than
as a method of a Math object you created.

Examples
The following function returns the arccosine of the variable x:

function getAcos(x) {
 return Math.acos(x)
}

If you pass -1 to getAcos, it returns 3.141592653589793; if you pass 2, it returns NaN
because 2 is out of range.

See also
file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/math.html (7 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

Math.asin, Math.atan, Math.atan2, Math.cos, Math.sin, Math.tan

asin

Returns the arcsine (in radians) of a number.

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
asin(x)

Parameters

x

A number

Description
The asin method returns a numeric value between -pi/2 and pi/2 radians. If the value of
number is outside this range, it returns NaN.

file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/math.html (8 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

Because asin is a static method of Math, you always use it as Math.asin(), rather than as
a method of a Math object you created.

Examples
The following function returns the arcsine of the variable x:

function getAsin(x) {
 return Math.asin(x)
}

If you pass getAsin the value 1, it returns 1.570796326794897 (pi/2); if you pass it the
value 2, it returns NaN because 2 is out of range.

See also
Math.acos, Math.atan, Math.atan2, Math.cos, Math.sin, Math.tan

atan

Returns the arctangent (in radians) of a number.

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
atan(x)

file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/math.html (9 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

Parameters

x

A number

Description
The atan method returns a numeric value between -pi/2 and pi/2 radians.

Because atan is a static method of Math, you always use it as Math.atan(), rather than as
a method of a Math object you created.

Examples
The following function returns the arctangent of the variable x:

function getAtan(x) {
 return Math.atan(x)
}

If you pass getAtan the value 1, it returns 0.7853981633974483; if you pass it the value
.5, it returns 0.4636476090008061.

See also
Math.acos, Math.asin, Math.atan2, Math.cos, Math.sin, Math.tan

atan2

Returns the arctangent of the quotient of its arguments.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (10 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
atan2(y, x)

Parameters

y, x

Number

Description
The atan2 method returns a numeric value between -pi and pi representing the angle
theta of an (x,y) point. This is the counterclockwise angle, measured in radians, between
the positive X axis, and the point (x,y). Note that the arguments to this function pass the
y-coordinate first and the x-coordinate second.

atan2 is passed separate x and y arguments, and atan is passed the ratio of those two
arguments.

Because atan2 is a static method of Math, you always use it as Math.atan2(), rather than
as a method of a Math object you created.

Examples

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (11 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

The following function returns the angle of the polar coordinate:

function getAtan2(x,y) {
 return Math.atan2(x,y)
}

If you pass getAtan2 the values (90,15), it returns 1.4056476493802699; if you pass it
the values (15,90), it returns 0.16514867741462683.

See also
Math.acos, Math.asin, Math.atan, Math.cos, Math.sin, Math.tan

ceil

Returns the smallest integer greater than or equal to a number.

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
ceil(x)

Parameters

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (12 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

x

A number

Description
Because ceil is a static method of Math, you always use it as Math.ceil(), rather than as
a method of a Math object you created.

Examples
The following function returns the ceil value of the variable x:

function getCeil(x) {
 return Math.ceil(x)
}

If you pass 45.95 to getCeil, it returns 46; if you pass -45.95, it returns -45.

See also
Math.floor

cos

Returns the cosine of a number.

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (13 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

ECMA version ECMA-262

Syntax
cos(x)

Parameters

x

A number

Description
The cos method returns a numeric value between -1 and 1, which represents the cosine
of the angle.

Because cos is a static method of Math, you always use it as Math.cos(), rather than as a
method of a Math object you created.

Examples
The following function returns the cosine of the variable x:

function getCos(x) {
 return Math.cos(x)
}

If x equals 2*Math.PI, getCos returns 1; if x equals Math.PI, the getCos method returns -
1.

See also
Math.acos, Math.asin, Math.atan, Math.atan2, Math.sin, Math.tan

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (14 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

E

Euler's constant and the base of natural logarithms, approximately 2.718.

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Description
Because E is a static property of Math, you always use it as Math.E, rather than as a
property of a Math object you created.

Examples
The following function returns Euler's constant:

function getEuler() {
 return Math.E
}

exp

Returns Ex, where x is the argument, and E is Euler's constant, the base of the natural
logarithms.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (15 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
exp(x)

Parameters

x

A number

Description
Because exp is a static method of Math, you always use it as Math.exp(), rather than as
a method of a Math object you created.

Examples
The following function returns the exponential value of the variable x:

function getExp(x) {
 return Math.exp(x)
}

If you pass getExp the value 1, it returns 2.718281828459045.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (16 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

See also
Math.E, Math.log, Math.pow

floor

Returns the largest integer less than or equal to a number.

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
floor(x)

Parameters

x

A number

Description

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (17 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

Because floor is a static method of Math, you always use it as Math.floor(), rather than
as a method of a Math object you created.

Examples
The following function returns the floor value of the variable x:

function getFloor(x) {
 return Math.floor(x)
}

If you pass 45.95 to getFloor, it returns 45; if you pass -45.95, it returns -46.

See also
Math.ceil

LN2

The natural logarithm of 2, approximately 0.693.

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Examples
The following function returns the natural log of 2:

function getNatLog2() {

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (18 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

 return Math.LN2
}

Description
Because LN2 is a static property of Math, you always use it as Math.LN2, rather than as
a property of a Math object you created.

LN10

The natural logarithm of 10, approximately 2.302.

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Examples
The following function returns the natural log of 10:

function getNatLog10() {
 return Math.LN10
}

Description
Because LN10 is a static property of Math, you always use it as Math.LN10, rather than
as a property of a Math object you created.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (19 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

log

Returns the natural logarithm (base E) of a number.

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
log(x)

Parameters

x

A number

Description
If the value of number is negative, the return value is always NaN.

Because log is a static method of Math, you always use it as Math.log(), rather than as a
method of a Math object you created.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (20 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

Examples
The following function returns the natural log of the variable x:

function getLog(x) {
 return Math.log(x)
}

If you pass getLog the value 10, it returns 2.302585092994046; if you pass it the value
0, it returns -Infinity; if you pass it the value -1, it returns NaN because -1 is out of
range.

See also
Math.exp, Math.pow

LOG2E

The base 2 logarithm of E (approximately 1.442).

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Examples
The following function returns the base 2 logarithm of E:

function getLog2e() {
 return Math.LOG2E
}

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (21 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

Description
Because LOG2E is a static property of Math, you always use it as Math.LOG2E, rather
than as a property of a Math object you created.

LOG10E

The base 10 logarithm of E (approximately 0.434).

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Examples
The following function returns the base 10 logarithm of E:

function getLog10e() {
 return Math.LOG10E
}

Description
Because LOG10E is a static property of Math, you always use it as Math.LOG10E,
rather than as a property of a Math object you created.

max

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (22 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

Returns the larger of two numbers.

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
max(x,y)

Parameters

x, y

Numbers.

Description
Because max is a static method of Math, you always use it as Math.max(), rather than as
a method of a Math object you created.

Examples
The following function evaluates the variables x and y:

function getMax(x,y) {

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (23 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

 return Math.max(x,y)
}

If you pass getMax the values 10 and 20, it returns 20; if you pass it the values -10 and -
20, it returns -10.

See also
Math.min

min

Returns the smaller of two numbers.

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
min(x,y)

Parameters

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (24 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

x, y

Numbers

Description
Because min is a static method of Math, you always use it as Math.min(), rather than as
a method of a Math object you created.

Examples
The following function evaluates the variables x and y:

function getMin(x,y) {
 return Math.min(x,y)
}

If you pass getMin the values 10 and 20, it returns 10; if you pass it the values -10 and -
20, it returns -20.

See also
Math.max

PI

The ratio of the circumference of a circle to its diameter, approximately 3.14159.

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (25 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

ECMA version ECMA-262

Examples
The following function returns the value of pi:

function getPi() {
 return Math.PI
}

Description
Because PI is a static property of Math, you always use it as Math.PI, rather than as a
property of a Math object you created.

pow

Returns base to the exponent power, that is, baseexponent.

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
pow(x,y)

Parameters
file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (26 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

base

The base number

exponent

The exponent to which to raise base

Description
Because pow is a static method of Math, you always use it as Math.pow(), rather than as
a method of a Math object you created.

Examples
function raisePower(x,y) {
 return Math.pow(x,y)
}

If x is 7 and y is 2, raisePower returns 49 (7 to the power of 2).

See also
Math.exp, Math.log

random

Returns a pseudo-random number between 0 and 1. The random number generator is
seeded from the current time, as in Java.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (27 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0: Unix only

JavaScript 1.1, NES 2.0: all platforms

ECMA version ECMA-262

Syntax
random()

Parameters
None.

Description
Because random is a static method of Math, you always use it as Math.random(), rather
than as a method of a Math object you created.

Examples
//Returns a random number between 0 and 1
function getRandom() {
 return Math.random()
}

round

Returns the value of a number rounded to the nearest integer.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (28 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
round(x)

Parameters

x

A number

Description
If the fractional portion of number is .5 or greater, the argument is rounded to the next
higher integer. If the fractional portion of number is less than .5, the argument is
rounded to the next lower integer.

Because round is a static method of Math, you always use it as Math.round(), rather
than as a method of a Math object you created.

Examples
//Returns the value 20
x=Math.round(20.49)

//Returns the value 21

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (29 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

x=Math.round(20.5)

//Returns the value -20
x=Math.round(-20.5)

//Returns the value -21
x=Math.round(-20.51)

sin

Returns the sine of a number.

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
sin(x)

Parameters

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (30 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

x

A number

Description
The sin method returns a numeric value between -1 and 1, which represents the sine of
the argument.

Because sin is a static method of Math, you always use it as Math.sin(), rather than as a
method of a Math object you created.

Examples
The following function returns the sine of the variable x:

function getSine(x) {
 return Math.sin(x)
}

If you pass getSine the value Math.PI/2, it returns 1.

See also
Math.acos, Math.asin, Math.atan, Math.atan2, Math.cos, Math.tan

sqrt

Returns the square root of a number.

Method of Math

Static

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (31 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
sqrt(x)

Parameters

x

A number

Description
If the value of number is negative, sqrt returns NaN.

Because sqrt is a static method of Math, you always use it as Math.sqrt(), rather than as
a method of a Math object you created.

Examples
The following function returns the square root of the variable x:

function getRoot(x) {
 return Math.sqrt(x)
}

If you pass getRoot the value 9, it returns 3; if you pass it the value 2, it returns
1.414213562373095.

SQRT1_2
file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (32 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

The square root of 1/2; equivalently, 1 over the square root of 2, approximately 0.707.

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Examples
The following function returns 1 over the square root of 2:

function getRoot1_2() {
 return Math.SQRT1_2
}

Description
Because SQRT1_2 is a static property of Math, you always use it as Math.SQRT1_2,
rather than as a property of a Math object you created.

SQRT2

The square root of 2, approximately 1.414.

Property of Math

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (33 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Examples
The following function returns the square root of 2:

function getRoot2() {
 return Math.SQRT2
}

Description
Because SQRT2 is a static property of Math, you always use it as Math.SQRT2, rather
than as a property of a Math object you created.

tan

Returns the tangent of a number.

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (34 of 35) [9/16/2004 9:54:46 AM]

Core JavaScript Reference 1.5:

Syntax
tan(x)

Parameters

x

A number

Description
The tan method returns a numeric value that represents the tangent of the angle.

Because tan is a static method of Math, you always use it as Math.tan(), rather than as a
method of a Math object you created.

Examples
The following function returns the tangent of the variable x:

function getTan(x) {
 return Math.tan(x)
}

See also
Math.acos, Math.asin, Math.atan, Math.atan2, Math.cos, Math.sin

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/math.html (35 of 35) [9/16/2004 9:54:46 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5:

Previous Contents Index Next

Core JavaScript Reference 1.5

netscape

A top-level object used to access any Java class in the package netscape.*.

Core object

Implemented in JavaScript 1.1, NES 2.0

Created by
The netscape object is a top-level, predefined JavaScript object. You can automatically
access it without using a constructor or calling a method.

Description
The netscape object is a convenience synonym for the property Packages.netscape.

See also
Packages, Packages.netscape

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%20D...bat/JavaScript/Netscape/JS15/Refrence/netscape.html [9/16/2004 9:54:48 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5:

Previous Contents Index Next

Core JavaScript Reference 1.5

Number

Lets you work with numeric values. The Number object is an object wrapper for
primitive numeric values.

Core object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2: modified behavior of Number constructor.

JavaScript 1.3: added toSource method.

JavaScript 1.5, NES 6.0: added toExponential, toFixed,
and toPrecision methods.

ECMA version ECMA-262

Created by
The Number constructor:

new Number(value)

Parameters

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/number.html (1 of 20) [9/16/2004 9:54:51 AM]

Core JavaScript Reference 1.5:

value

The numeric value of the object being created.

Description
The primary uses for the Number object are:

●

● To access its constant properties, which represent the largest and smallest
representable numbers, positive and negative infinity, and the Not-a-Number
value.

● To create numeric objects that you can add properties to. Most likely, you will
rarely need to create a Number object.

The properties of Number are properties of the class itself, not of individual Number
objects.

JavaScript 1.2: Number(x) now produces NaN rather than an error if x is a string that
does not contain a well-formed numeric literal. For example,

x=Number("three");

document.write(x + "
");

prints NaN

You can convert any object to a number using the top-level Number function.

Property Summary

Property Description

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/number.html (2 of 20) [9/16/2004 9:54:51 AM]

Core JavaScript Reference 1.5:

constructor

Specifies the function that creates an object's
prototype.

MAX_VALUE

The largest representable number.

MIN_VALUE

The smallest representable number.

NaN

Special "not a number" value.

NEGATIVE_INFINITY

Special value representing negative infinity;
returned on overflow.

POSITIVE_INFINITY

Special value representing infinity; returned on
overflow.

prototype

Allows the addition of properties to a Number
object.

Method Summary

Method Description

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/number.html (3 of 20) [9/16/2004 9:54:51 AM]

Core JavaScript Reference 1.5:

toExponential

Returns a string representing the number in exponential
notation.

toFixed

Returns a string representing the number in fixed-point
notation.

toPrecision

Returns a string representing the number to a specified
precision in fixed-point notation.

toSource

Returns an object literal representing the specified Number
object; you can use this value to create a new object.
Overrides the Object.toSource method.

toString

Returns a string representing the specified object. Overrides
the Object.toString method.

valueOf

Returns the primitive value of the specified object.
Overrides the Object.valueOf method.

In addition, this object inherits the watch and unwatch methods from Object.

Examples
Example 1. The following example uses the Number object's properties to assign values
to several numeric variables:

biggestNum = Number.MAX_VALUE;
smallestNum = Number.MIN_VALUE;
infiniteNum = Number.POSITIVE_INFINITY;
negInfiniteNum = Number.NEGATIVE_INFINITY;
notANum = Number.NaN;

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/number.html (4 of 20) [9/16/2004 9:54:51 AM]

Core JavaScript Reference 1.5:

Example 2. The following example creates a Number object, myNum, then adds a
description property to all Number objects. Then a value is assigned to the myNum
object's description property.

myNum = new Number(65);
Number.prototype.description=null;
myNum.description="wind speed";

constructor

Specifies the function that creates an object's prototype. Note that the value of this
property is a reference to the function itself, not a string containing the function's name.

Property of Number

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Description
See Object.constructor.

MAX_VALUE

The maximum numeric value representable in JavaScript.

Property of Number

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/number.html (5 of 20) [9/16/2004 9:54:51 AM]

Core JavaScript Reference 1.5:

Static, Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Description
The MAX_VALUE property has a value of approximately 1.79E+308. Values larger
than MAX_VALUE are represented as "Infinity".

Because MAX_VALUE is a static property of Number, you always use it as
Number.MAX_VALUE, rather than as a property of a Number object you created.

Examples
The following code multiplies two numeric values. If the result is less than or equal to
MAX_VALUE, the func1 function is called; otherwise, the func2 function is called.

if (num1 * num2 <= Number.MAX_VALUE)
 func1()
else
 func2()

MIN_VALUE

The smallest positive numeric value representable in JavaScript.

Property of Number

Static, Read-only

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/number.html (6 of 20) [9/16/2004 9:54:51 AM]

Core JavaScript Reference 1.5:

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Description
The MIN_VALUE property is the number closest to 0, not the most negative number,
that JavaScript can represent.

MIN_VALUE has a value of approximately 5e-324. Values smaller than MIN_VALUE
("underflow values") are converted to 0.

Because MIN_VALUE is a static property of Number, you always use it as
Number.MIN_VALUE, rather than as a property of a Number object you created.

Examples
The following code divides two numeric values. If the result is greater than or equal to
MIN_VALUE, the func1 function is called; otherwise, the func2 function is called.

if (num1 / num2 >= Number.MIN_VALUE)
 func1()
else
 func2()

NaN

A special value representing Not-A-Number. This value is represented as the unquoted
literal NaN.

Property of Number

Read-only

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/number.html (7 of 20) [9/16/2004 9:54:51 AM]

Core JavaScript Reference 1.5:

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Description
JavaScript prints the value Number.NaN as NaN.

NaN is always unequal to any other number, including NaN itself; you cannot check for
the not-a-number value by comparing to Number.NaN. Use the isNaN function instead.

You might use the NaN property to indicate an error condition for a function that should
return a valid number.

Examples
In the following example, if month has a value greater than 12, it is assigned NaN, and a
message is displayed indicating valid values.

var month = 13
if (month < 1 || month > 12) {
 month = Number.NaN
 alert("Month must be between 1 and 12.")
}

See also
NaN, isNaN, parseFloat, parseInt

NEGATIVE_INFINITY

A special numeric value representing negative infinity. This value is represented as the
unquoted literal "-Infinity".

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/number.html (8 of 20) [9/16/2004 9:54:51 AM]

Core JavaScript Reference 1.5:

Property of Number

Static, Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Description
This value behaves slightly differently than mathematical infinity:

●

● Any positive value, including POSITIVE_INFINITY, multiplied by
NEGATIVE_INFINITY is NEGATIVE_INFINITY.

● Any negative value, including NEGATIVE_INFINITY, multiplied by
NEGATIVE_INFINITY is POSITIVE_INFINITY.

● Zero multiplied by NEGATIVE_INFINITY is NaN.

● NaN multiplied by NEGATIVE_INFINITY is NaN.

● NEGATIVE_INFINITY, divided by any negative value except
NEGATIVE_INFINITY, is POSITIVE_INFINITY.

● NEGATIVE_INFINITY, divided by any positive value except
POSITIVE_INFINITY, is NEGATIVE_INFINITY.

● NEGATIVE_INFINITY, divided by either NEGATIVE_INFINITY or
POSITIVE_INFINITY, is NaN.

● Any number divided by NEGATIVE_INFINITY is Zero.

Because NEGATIVE_INFINITY is a static property of Number, you always use it as
Number.NEGATIVE_INFINITY, rather than as a property of a Number object you
created.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/number.html (9 of 20) [9/16/2004 9:54:51 AM]

Core JavaScript Reference 1.5:

Examples
In the following example, the variable smallNumber is assigned a value that is smaller
than the minimum value. When the if statement executes, smallNumber has the value "-
Infinity", so the func1 function is called.

var smallNumber = -Number.MAX_VALUE*10
if (smallNumber == Number.NEGATIVE_INFINITY)
 func1()
else
 func2()

See also
Infinity, isFinite

POSITIVE_INFINITY

A special numeric value representing infinity. This value is represented as the unquoted
literal "Infinity".

Property of Number

Static, Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Description
This value behaves slightly differently than mathematical infinity:

●

● Any positive value, including POSITIVE_INFINITY, multiplied by
POSITIVE_INFINITY is POSITIVE_INFINITY.

file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/number.html (10 of 20) [9/16/2004 9:54:51 AM]

Core JavaScript Reference 1.5:

● Any negative value, including NEGATIVE_INFINITY, multiplied by
POSITIVE_INFINITY is NEGATIVE_INFINITY.

● Zero multiplied by POSITIVE_INFINITY is NaN.

● NaN multiplied by POSITIVE_INFINITY is NaN.

● POSITIVE_INFINITY, divided by any negative value except
NEGATIVE_INFINITY, is NEGATIVE_INFINITY.

● POSITIVE_INFINITY, divided by any positive value except
POSITIVE_INFINITY, is POSITIVE_INFINITY.

● POSITIVE_INFINITY, divided by either NEGATIVE_INFINITY or
POSITIVE_INFINITY, is NaN.

● Any number divided by POSITIVE_INFINITY is Zero.

Because POSITIVE_INFINITY is a static property of Number, you always use it as
Number.POSITIVE_INFINITY, rather than as a property of a Number object you
created.

Examples
In the following example, the variable bigNumber is assigned a value that is larger than
the maximum value. When the if statement executes, bigNumber has the value
"Infinity", so the func1 function is called.

var bigNumber = Number.MAX_VALUE * 10
if (bigNumber == Number.POSITIVE_INFINITY)
 func1()
else
 func2()

See also
Infinity, isFinite

prototype

file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/number.html (11 of 20) [9/16/2004 9:54:51 AM]

Core JavaScript Reference 1.5:

Represents the prototype for this class. You can use the prototype to add properties or
methods to all instances of a class. For information on prototypes, see
Function.prototype.

Property of Number

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

toExponential

Returns a string representing the Number object in exponential notation.

Method of Number

Implemented in JavaScript 1.5

ECMA version ECMA-262, Edition 3

Syntax
toExponential([fractionDigits])

Parameters

file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/number.html (12 of 20) [9/16/2004 9:54:51 AM]

Core JavaScript Reference 1.5:

fractionDigits

An integer specifying the number of digits after the decimal
point. Defaults to as many digits as necessary to specify the
number.

Description
The Number.prototype.toExponential method returns a string representing a Number
object in exponential notation with one digit before the decimal point, rounded to
fractionDigits digits after the decimal point. If the fractionDigits argument is omitted,
the number of digits after the decimal point defaults to the number of digits necessary to
represent the value uniquely.

If you use the toExponential method for a numeric literal and the numeric literal has no
exponent and no decimal point, leave a space before the dot that precedes the method
call to prevent the dot from being interpreted as a decimal point.

If a number has more digits that requested by the fractionDigits parameter, the number
is rounded to the nearest number represented by fractionDigits digits. See the discussion
of rounding in the description of the toFixed method on page 129, which also applies to
toExponential.

Examples
var num=77.1234
alert("num.toExponential() is " + num.toExponential()) //displays 7.71234e+1
alert("num.toExponential(4) is " + num.toExponential(4)) //displays 7.7123e+1
alert("num.toExponential(2) is " + num.toExponential(2)) //displays 7.71e+1
alert("77.1234.toExponential() is " + 77.1234.toExponential())
//displays 7.71234e+1
alert("77 .toExponential() is " + 77 .toExponential()) //displays 7.7e+1

See also
toFixed, toPrecision, toString

toFixed

Returns a string representing the Number object in fixed-point notation.

file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/number.html (13 of 20) [9/16/2004 9:54:51 AM]

Core JavaScript Reference 1.5:

Method of Number

Implemented in JavaScript 1.5

ECMA version ECMA-262, Edition 3

Syntax
toFixed([fractionDigits])

Parameters

fractionDigits

An integer specifying the number of digits after the decimal
point. Defaults to zero.

Description
The Number.prototype.toFixed method returns a string representing a Number object in
fixed-point notation, rounded to the number of digits after the decimal point specified
by fractionDigits.

The output of toFixed may be more precise than toString for some values, because
toString outputs only enough significant digits to distinguish the number from adjacent
number values.

If a number has more digits that requested by the fractionDigits parameter, the number
is rounded to the nearest number represented by fractionDigits digits. If the number is
exactly halfway between two representable numbers, it is rounded away from zero (up
if it is positive, down if it is negative). Thus:

file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/number.html (14 of 20) [9/16/2004 9:54:51 AM]

Core JavaScript Reference 1.5:

0.124.toFixed(2) returns "0.12".
0.125.tofixed(2) returns "0.13", because 0.125 is exactly halfway between 0.12
and 0.13.
0 .126.tofixed(2) returns "0.13".

Given this convention, one might expect 0.045.toFixed(2) to return "0.05", but it returns
"0.04". This is because of the way computers represent IEEE 754 floating-point
numbers. The IEEE 754 standard uses binary fractions (fractions of 0's and 1's after the
dot). Just as some numbers, such as 1/3, are not representable precisely as decimal
fractions, other numbers, such as 0.045, are not precisely representable as binary
fractions. The IEEE 754 standard dictates that 0.045 be approximated to
0.04499999999999999833466546306226518936455249786376953125, which is
precisely representable as a binary fraction. This approximation is closer to 0.04 than to
0.05, so 0.045.toFixed(2) returns "0.04".

Examples
var num=10.1234
alert("num.toFixed() is " + num.toFixed()) //displays 10
alert("num.toFixed(4) is " + num.toFixed(4)) //displays 10.1234 alert("num.toFixed(2)
is " + num.toFixed(2)) //displays 10.12

See also
toExponential, toPrecision, toString

toPrecision

Returns a string representing the Number object to the specified precision.

Method of Number

Implemented in JavaScript 1.5

ECMA version ECMA-262, Edition 3

file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/number.html (15 of 20) [9/16/2004 9:54:51 AM]

Core JavaScript Reference 1.5:

Syntax
toPrecision([precision])

Parameters

precision

An integer specifying the number of digits after the decimal
point.

Description
The Number.prototype.toPrecision method returns a string representing a Number
object in fixed-point or exponential notation rounded to precision significant digits.

If you use the toPrecision method for a numeric literal and the numeric literal has no
exponent and no decimal point, leave a space before the dot that precedes the method
call to prevent the dot from being interpreted as a decimal point.

If the precision argument is omitted, behaves as Number.prototype.toString.

If a number has more digits that requested by the precision parameter, the number is
rounded to the nearest number represented by precision digits. See the discussion of
rounding in the description of the toFixed method on page 129, which also applies to
toPrecision.

Examples
var num=5.123456
alert("num.toPrecision() is " + num.toPrecision()) //displays 5.123456
alert("num.toPrecision(4) is " + num.toPrecision(4)) //displays 5.123
alert("num.toPrecision(2) is " + num.toPrecision(2)) //displays 5.1
alert("num.toPrecision(2) is " + num.toPrecision(1)) //displays 5
alert("num.toPrecision(2) is " + num.toPrecision(1)) //displays 5
alert("1250 .toPrecision() is " + 1250 .toPrecision(2))
//displays 1.3e+3
alert("1250 .toPrecision(5) is " + 1250 .toPrecision(5))

file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/number.html (16 of 20) [9/16/2004 9:54:51 AM]

Core JavaScript Reference 1.5:

//displays 1250.0

See also
toExponential, toFixed, toString

toSource

Returns a string representing the source code of the object.

Method of Number

Implemented in JavaScript 1.3

Syntax
toSource()

Parameters
None

Description
The toSource method returns the following values:

●

● For the built-in Number object, toSource returns the following string indicating
that the source code is not available:

 function Number() {
 [native code]
 }

● For instances of Number, toSource returns a string representing the source code.

file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/number.html (17 of 20) [9/16/2004 9:54:51 AM]

Core JavaScript Reference 1.5:

This method is usually called internally by JavaScript and not explicitly in code.

See also
Object.toSource

toString

Returns a string representing the specified Number object.

Method of Number

Implemented in JavaScript 1.1

ECMA version ECMA-262

Syntax
toString()
toString([radix])

Parameters

radix

An integer between 2 and 36 specifying the base to use for
representing numeric values.

Description
file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/number.html (18 of 20) [9/16/2004 9:54:51 AM]

Core JavaScript Reference 1.5:

The Number object overrides the toString method of the Object object; it does not
inherit Object.toString. For Number objects, the toString method returns a string
representation of the object.

JavaScript calls the toString method automatically when a number is to be represented
as a text value or when a number is referred to in a string concatenation.

If you use the toString method for a numeric literal and the numeric literal has no
exponent and no decimal point, leave a space before the dot that precedes the method
call to prevent the dot from being interpreted as a decimal point.

For Number objects and values, the built-in toString method returns the string
representing the value of the number.

var howMany=10;
alert("howMany.toString() is " + howMany.toString())
alert("45 .toString() is " + 45 .toString())

See also
toExponential, toFixed, toPrecision

valueOf

Returns the primitive value of a Number object.

Method of Number

Implemented in JavaScript 1.1

ECMA version ECMA-262

Syntax
valueOf()

file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/number.html (19 of 20) [9/16/2004 9:54:51 AM]

Core JavaScript Reference 1.5:

Parameters
None

Description
The valueOf method of Number returns the primitive value of a Number object as a
number data type.

This method is usually called internally by JavaScript and not explicitly in code.

Examples
x = new Number();
alert(x.valueOf()) //displays 0

See also
Object.valueOf

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/number.html (20 of 20) [9/16/2004 9:54:51 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5:

Previous Contents Index Next

Core JavaScript Reference 1.5

Object

Object is the primitive JavaScript object type. All JavaScript objects are descended from
Object. That is, all JavaScript objects have the methods defined for Object.

Core object

Implemented in JavaScript 1.0: toString method.

JavaScript 1.1, NES 2.0: added eval and valueOf
methods; constructor property.

JavaScript 1.2: deprecated eval method.

JavaScript 1.3: added toSource method.

JavaScript 1.4: removed eval method.

ECMA version ECMA-262

Created by
The Object constructor:

new Object()

Parameters
None

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/object.html (1 of 15) [9/16/2004 9:54:54 AM]

Core JavaScript Reference 1.5:

Property Summary

Property Description

constructor

Specifies the function that creates an object's prototype.

prototype

Allows the addition of properties to all objects.

Method Summary

Method Description

eval

Deprecated. Evaluates a string of JavaScript code in the context
of the specified object.

toSource

Returns an object literal representing the specified object; you can
use this value to create a new object.

toString

Returns a string representing the specified object.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/object.html (2 of 15) [9/16/2004 9:54:54 AM]

Core JavaScript Reference 1.5:

unwatch

Removes a watchpoint from a property of the object.

valueOf

Returns the primitive value of the specified object.

watch

Adds a watchpoint to a property of the object.

constructor

Specifies the function that creates an object's prototype. Note that the value of this
property is a reference to the function itself, not a string containing the function's name.

Property of Object

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Description
All objects inherit a constructor property from their prototype:

o = new Object // or o = {} in JavaScript 1.2
o.constructor == Object
a = new Array // or a = [] in JavaScript 1.2
a.constructor == Array
n = new Number(3)
n.constructor == Number

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/object.html (3 of 15) [9/16/2004 9:54:54 AM]

Core JavaScript Reference 1.5:

Even though you cannot construct most HTML objects, you can do comparisons. For
example,

document.constructor == Document
document.form3.constructor == Form

Examples
The following example creates a prototype, Tree, and an object of that type, theTree.
The example then displays the constructor property for the object theTree.

function Tree(name) {
 this.name=name
}
theTree = new Tree("Redwood")
document.writeln("theTree.constructor is " +
 theTree.constructor + "<P>")

This example displays the following output:

theTree.constructor is function Tree(name) { this.name = name; }

eval

Deprecated. Evaluates a string of JavaScript code in the context of an object.

Method of Object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2, NES 3.0: deprecated as method of objects;
retained as top-level function.

JavaScript 1.4: removed as method of objects.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/object.html (4 of 15) [9/16/2004 9:54:54 AM]

Core JavaScript Reference 1.5:

Syntax
eval(string)

Parameters

string

Any string representing a JavaScript expression, statement, or
sequence of statements. The expression can include variables and
properties of existing objects.

Description
The eval method is no longer available as a method of Object. Use the top-level eval
function.

Backward Compatibility

JavaScript 1.2 and 1.3. eval as a method of Object and every object derived from
Object is deprecated (but still available).

JavaScript 1.1. eval is a method of Object and every object derived from Object.

See also
eval

prototype

Represents the prototype for this class. You can use the prototype to add properties or
methods to all instances of a class. For more information, see Function.prototype.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/object.html (5 of 15) [9/16/2004 9:54:54 AM]

Core JavaScript Reference 1.5:

Property of Object

Implemented in JavaScript 1.1

ECMA version ECMA-262

toSource

Returns a string representing the source code of the object.

Method of Object

Implemented in JavaScript 1.3

Syntax
toSource()

Parameters
None

Description
The toSource method returns the following values:

●

● For the built-in Object object, toSource returns the following string indicating
that the source code is not available:

 function Object() {
 [native code]
 }

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/object.html (6 of 15) [9/16/2004 9:54:54 AM]

Core JavaScript Reference 1.5:

● For instances of Object, toSource returns a string representing the source code.

● For custom objects, toSource returns the JavaScript source that defines the object
as a string.

This method is usually called internally by JavaScript and not explicitly in code. You
can call toSource while debugging to examine the contents of an object.

Examples
The following code defines the Dog object type and creates theDog, an object of type
Dog:

function Dog(name,breed,color,sex) {
 this.name=name
 this.breed=breed
 this.color=color
 this.sex=sex
}
theDog = new Dog("Gabby","Lab","chocolate","girl")

Calling the toSource method of theDog displays the JavaScript source that defines the
object:

theDog.toSource()
//returns "{name:"Gabby", breed:"Lab", color:"chocolate", sex:"girl"}

See also
Object.toString

toString

Returns a string representing the specified object.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/object.html (7 of 15) [9/16/2004 9:54:54 AM]

Core JavaScript Reference 1.5:

Method of Object

Implemented in JavaScript 1.0

ECMA version ECMA-262

Syntax
toString()

Description
Every object has a toString method that is automatically called when it is to be
represented as a text value or when an object is referred to in a string concatenation. For
example, the following examples require theDog to be represented as a string:

document.write(theDog)
document.write("The dog is " + theDog)

By default, the toString method is inherited by every object descended from Object.
You can override this method for custom objects that you create. If you do not override
toString in a custom object, toString returns [object type], where type is the object type
or the name of the constructor function that created the object.

For example:

var o = new Object()
o.toString // returns [object Object]

Built-in toString methods. Every built-in core JavaScript object overrides the toString
method of Object to return an appropriate value. JavaScript calls this method whenever
it needs to convert an object to a string.

Overriding the default toString method. You can create a function to be called in
place of the default toString method. The toString method takes no arguments and
should return a string. The toString method you create can be any value you want, but it
will be most useful if it carries information about the object.

The following code defines the Dog object type and creates theDog, an object of type
Dog:

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/object.html (8 of 15) [9/16/2004 9:54:54 AM]

Core JavaScript Reference 1.5:

function Dog(name,breed,color,sex) {
 this.name=name
 this.breed=breed
 this.color=color
 this.sex=sex
}

theDog = new Dog("Gabby","Lab","chocolate","girl")

If you call the toString method on this custom object, it returns the default value
inherited from Object:

theDog.toString() //returns [object Object]

The following code creates dogToString, the function that will be used to override the
default toString method. This function generates a string containing each property, of
the form "property = value;".

function dogToString() {
 var ret = "Dog " + this.name + " is [\n"
 for (var prop in this)
 ret += " " + prop + " is " + this[prop] + ";\n"
 return ret + "]"
}

The following code assigns the user-defined function to the object's toString method:

Dog.prototype.toString = dogToString

With the preceding code in place, any time theDog is used in a string context,
JavaScript automatically calls the dogToString function, which returns the following
string:

Dog Gabby is [
 name is Gabby;
 breed is Lab;
 color is chocolate;
 sex is girl;
]

An object's toString method is usually invoked by JavaScript, but you can invoke it
yourself as follows:

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/object.html (9 of 15) [9/16/2004 9:54:54 AM]

Core JavaScript Reference 1.5:

var dogString = theDog.toString()

Backward Compatibility

JavaScript 1.2. The behavior of the toString method depends on whether you specify
LANGUAGE="JavaScript1.2" in the <SCRIPT> tag:

●

● If you specify LANGUAGE="JavaScript1.2" in the <SCRIPT> tag, the toString
method returns an object literal.

● If you do not specify LANGUAGE="JavaScript1.2" in the <SCRIPT> tag, the
toString method returns [object type], as with other JavaScript versions.

Examples
Example 1: The location object. The following example prints the string equivalent of
the current location.

document.write("location.toString() is " + location.toString() + "
")

The output is as follows:

location.toString() is file:///C|/TEMP/myprog.htmll

Example 2: Object with no string value. Assume you have an Image object named
sealife defined as follows:

Because the Image object itself has no special toString method, sealife.toString() returns
the following:

[object Image]

Example 3: The radix parameter. The following example prints the string equivalents
of the numbers 0 through 9 in decimal and binary.

for (x = 0; x < 10; x++) {
 document.write("Decimal: ", x.toString(10), " Binary: ",
 x.toString(2), "
")
}

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/object.html (10 of 15) [9/16/2004 9:54:54 AM]

Core JavaScript Reference 1.5:

The preceding example produces the following output:

Decimal: 0 Binary: 0
Decimal: 1 Binary: 1
Decimal: 2 Binary: 10
Decimal: 3 Binary: 11
Decimal: 4 Binary: 100
Decimal: 5 Binary: 101
Decimal: 6 Binary: 110
Decimal: 7 Binary: 111
Decimal: 8 Binary: 1000
Decimal: 9 Binary: 1001

See also
Object.toSource, Object.valueOf

unwatch

Removes a watchpoint set with the watch method.

Method of Object

Implemented in JavaScript 1.2, NES 3.0

Syntax
unwatch(prop)

Parameters

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/object.html (11 of 15) [9/16/2004 9:54:54 AM]

Core JavaScript Reference 1.5:

prop The name of a property of the object.

Description
The JavaScript debugger has functionality similar to that provided by this method, as
well as other debugging options. For information on the debugger, see Venkman, the
new JavaScript Debugger for Netscape 7.x.

By default, this method is inherited by every object descended from Object.

Example
See watch.

valueOf

Returns the primitive value of the specified object.

Method of Object

Implemented in JavaScript 1.1

ECMA version ECMA-262

Syntax
valueOf()

Parameters
None

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/object.html (12 of 15) [9/16/2004 9:54:54 AM]

file:///devedge-srce/viewsource/2002/venkman/01/
file:///devedge-srce/viewsource/2002/venkman/01/

Core JavaScript Reference 1.5:

Description
JavaScript calls the valueOf method to convert an object to a primitive value. You
rarely need to invoke the valueOf method yourself; JavaScript automatically invokes it
when encountering an object where a primitive value is expected.

By default, the valueOf method is inherited by every object descended from Object.
Every built-in core object overrides this method to return an appropriate value. If an
object has no primitive value, valueOf returns the object itself, which is displayed as:

[object Object]

You can use valueOf within your own code to convert a built-in object into a primitive
value. When you create a custom object, you can override Object.valueOf to call a
custom method instead of the default Object method.

Overriding valueOf for custom objects. You can create a function to be called in
place of the default valueOf method. Your function must take no arguments.

Suppose you have an object type myNumberType and you want to create a valueOf
method for it. The following code assigns a user-defined function to the object's
valueOf method:

myNumberType.prototype.valueOf = new Function(functionText)

With the preceding code in place, any time an object of type myNumberType is used in
a context where it is to be represented as a primitive value, JavaScript automatically
calls the function defined in the preceding code.

An object's valueOf method is usually invoked by JavaScript, but you can invoke it
yourself as follows:

myNumber.valueOf()

Note Objects in string contexts convert via the toString method, which is different from
String objects converting to string primitives using valueOf. All string objects have a
string conversion, if only "[object type]". But many objects do not convert to number,
boolean, or function.

See also
parseInt, Object.toString

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/object.html (13 of 15) [9/16/2004 9:54:54 AM]

Core JavaScript Reference 1.5:

watch

Watches for a property to be assigned a value and runs a function when that occurs.

Method of Object

Implemented in JavaScript 1.2, NES 3.0

Syntax
watch(prop, handler)

Parameters

prop The name of a property of the object.

handler A function to call.

Description
Watches for assignment to a property named prop in this object, calling handler(prop,
oldval, newval) whenever prop is set and storing the return value in that property. A
watchpoint can filter (or nullify) the value assignment, by returning a modified newval
(or oldval).

If you delete a property for which a watchpoint has been set, that watchpoint does not
disappear. If you later recreate the property, the watchpoint is still in effect.

To remove a watchpoint, use the unwatch method. By default, the watch method is
inherited by every object descended from Object.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/object.html (14 of 15) [9/16/2004 9:54:54 AM]

Core JavaScript Reference 1.5:

The JavaScript debugger has functionality similar to that provided by this method, as
well as other debugging options. For information on the debugger, see Venkman, the
new JavaScript Debugger for Netscape 7.x.

Example
<script language="JavaScript1.2">
o = {p:1}
o.watch("p",
 function (id,oldval,newval) {
 document.writeln("o." + id + " changed from "
 + oldval + " to " + newval)
 return newval
 })

o.p = 2
o.p = 3
delete o.p
o.p = 4

o.unwatch('p')
o.p = 5

</script>

This script displays the following:

o.p changed from 1 to 2
o.p changed from 2 to 3
o.p changed from 3 to 4

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/object.html (15 of 15) [9/16/2004 9:54:54 AM]

file:///devedge-srce/viewsource/2002/venkman/01/
file:///devedge-srce/viewsource/2002/venkman/01/
http://www.netscape.com/

Core JavaScript Reference 1.5:

Previous Contents Index Next

Core JavaScript Reference 1.5

Packages

A top-level object used to access Java classes from within JavaScript code.

Core object

Implemented in JavaScript 1.1, NES 2.0

Created by
The Packages object is a top-level, predefined JavaScript object. You can automatically
access it without using a constructor or calling a method.

Description
The Packages object lets you access the public methods and fields of an arbitrary Java
class from within JavaScript. The java, netscape, and sun properties represent the
packages java.*, netscape.*, and sun.* respectively. Use standard Java dot notation to
access the classes, methods, and fields in these packages. For example, you can access a
constructor of the Frame class as follows:

var theFrame = new Packages.java.awt.Frame();

For convenience, JavaScript provides the top-level netscape, sun, and java objects that
are synonyms for the Packages properties with the same names. Consequently, you can
access Java classes in these packages without the Packages keyword, as follows:

var theFrame = new java.awt.Frame();

The className property represents the fully qualified path name of any other Java class
that is available to JavaScript. You must use the Packages object to access classes

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/packages.html (1 of 6) [9/16/2004 9:54:55 AM]

Core JavaScript Reference 1.5:

outside the netscape, sun, and java packages.

Property Summary

Property Description

className

The fully qualified name of a Java class in a package other than
netscape, java, or sun that is available to JavaScript.

java

Any class in the Java package java.*.

netscape

Any class in the Java package netscape.*.

sun

Any class in the Java package sun.*.

Examples
The following JavaScript function creates a Java dialog box:

function createWindow() {
 var theOwner = new Packages.java.awt.Frame();
 var theWindow = new Packages.java.awt.Dialog(theOwner);
 theWindow.setSize(350,200);
 theWindow.setTitle("Hello, World");
 theWindow.setVisible(true);
}

In the previous example, the function instantiates theWindow as a new Packages object.

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/packages.html (2 of 6) [9/16/2004 9:54:56 AM]

Core JavaScript Reference 1.5:

The setSize, setTitle, and setVisible methods are all available to JavaScript as public
methods of java.awt.Dialog.

className

The fully qualified name of a Java class in a package other than netscape, java, or sun
that is available to JavaScript.

Property of Packages

Implemented in JavaScript 1.1, NES 2.0

Syntax
Packages.className

where classname is the fully qualified name of a Java class.

Description
You must use the className property of the Packages object to access classes outside
the netscape, sun, and java packages.

Examples
The following code accesses the constructor of the CorbaObject class in the
myCompany package from JavaScript:

var theObject = new Packages.myCompany.CorbaObject()

In the previous example, the value of the className property is
myCompany.CorbaObject, the fully qualified path name of the CorbaObject class.

java

Any class in the Java package java.*.

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/packages.html (3 of 6) [9/16/2004 9:54:56 AM]

Core JavaScript Reference 1.5:

Property of Packages

Implemented in JavaScript 1.1, NES 2.0

Syntax
Packages.java

Description
Use the java property to access any class in the java package from within JavaScript.
Note that the top-level object java is a synonym for Packages.java.

Examples
The following code accesses the constructor of the java.awt.Frame class:

var theOwner = new Packages.java.awt.Frame();

You can simplify this code by using the top-level java object to access the constructor
as follows:

var theOwner = new java.awt.Frame();

netscape

Any class in the Java package netscape.*.

Property of Packages

Implemented in JavaScript 1.1, NES 2.0

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/packages.html (4 of 6) [9/16/2004 9:54:56 AM]

Core JavaScript Reference 1.5:

Syntax
Packages.netscape

Description
Use the netscape property to access any class in the netscape package from within
JavaScript. Note that the top-level object netscape is a synonym for Packages.netscape.

Examples
See the example for .Packages.java

sun

Any class in the Java package sun.*.

Property of Packages

Implemented in JavaScript 1.1, NES 2.0

Syntax
Packages.sun

Description
Use the sun property to access any class in the sun package from within JavaScript.
Note that the top-level object sun is a synonym for Packages.sun.

Examples
See the example for Packages.java

Previous Contents Index Next

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/packages.html (5 of 6) [9/16/2004 9:54:56 AM]

Core JavaScript Reference 1.5:

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%.../JavaScript/Netscape/JS15/Refrence/packages.html (6 of 6) [9/16/2004 9:54:56 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5:

Previous Contents Index Next

Core JavaScript Reference 1.5

RegExp

A regular expression object contains the pattern of a regular expression. It has
properties and methods for using that regular expression to find and replace matches in
strings.

In addition to the properties of an individual regular expression object that you create
using the RegExp constructor function, the predefined RegExp object has static
properties that are set whenever any regular expression is used.

Core object

Implemented in JavaScript 1.2, NES 3.0

JavaScript 1.3: added toSource method.

JavaScript 1.5, NES 6.0: added m flag, non-greedy
modifier, non-capturing parentheses, lookahead
assertions. ECMA 262, Edition 3

Created by
A literal text format or the RegExp constructor function.

The literal format is used as follows:

/pattern/flags

The constructor function is used as follows:

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/regexp.html (1 of 24) [9/16/2004 9:54:59 AM]

Core JavaScript Reference 1.5:

new RegExp("pattern"[, "flags"])

Parameters

pattern

The text of the regular expression.

flags

If specified, flags can have any combination of the following
values:

●

● g: global match

● i: ignore case

● m: match over multiple lines

Notice that the parameters to the literal format do not use quotation marks to indicate
strings, while the parameters to the constructor function do use quotation marks. So the
following expressions create the same regular expression:

/ab+c/i
new RegExp("ab+c", "i")

Description
When using the constructor function, the normal string escape rules (preceding special
characters with \ when included in a string) are necessary. For example, the following
are equivalent:

re = new RegExp("\\w+")
re = /\w+/

The following table provides a complete list and description of the special characters
that can be used in regular expressions.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/regexp.html (2 of 24) [9/16/2004 9:54:59 AM]

Core JavaScript Reference 1.5:

Table 1.1 Special characters in regular expressions.

Character Meaning

\

For characters that are usually treated literally, indicates that the next
character is special and not to be interpreted literally.

For example, /b/ matches the character 'b'. By placing a backslash in front
of b, that is by using /\b/, the character becomes special to mean match a
word boundary.

-or-

For characters that are usually treated specially, indicates that the next
character is not special and should be interpreted literally.

For example, * is a special character that means 0 or more occurrences of
the preceding character should be matched; for example, /a*/ means match
0 or more a's. To match * literally, precede the it with a backslash; for
example, /a*/ matches 'a*'.

^

Matches beginning of input. If the multiline flag is set to true, also matches
immediately after a line break character.

For example, /^A/ does not match the 'A' in "an A", but does match the first
'A' in "An A."

$

Matches end of input. If the multiline flag is set to true, also matches
immediately before a line break character.

For example, /t$/ does not match the 't' in "eater", but does match it in
"eat".

*

Matches the preceding item 0 or more times.

For example, /bo*/ matches 'boooo' in "A ghost booooed" and 'b' in "A bird
warbled", but nothing in "A goat grunted".

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/regexp.html (3 of 24) [9/16/2004 9:54:59 AM]

Core JavaScript Reference 1.5:

+

Matches the preceding item 1 or more times. Equivalent to {1,}.

For example, /a+/ matches the 'a' in "candy" and all the a's in
"caaaaaaandy".

?

Matches the preceding item 0 or 1 time.

For example, /e?le?/ matches the 'el' in "angel" and the 'le' in "angle."

If used immediately after any of the quantifiers *, +, ?, or {}, makes the
quantifier non-greedy (matching the minimum number of times), as
opposed to the default, which is greedy (matching the maximum number of
times).

Also used in lookahead assertions, described under (?=), (?!), and (?:) in
this table.

.

(The decimal point) matches any single character except the newline
character.

For example, /.n/ matches 'an' and 'on' in "nay, an apple is on the tree", but
not 'nay'.

(x)

Matches 'x' and remembers the match. These are called capturing
parentheses.

For example, /(foo)/ matches and remembers 'foo' in "foo bar." The
matched substring can be recalled from the resulting array's elements [1],
..., [n] or from the predefined RegExp object's properties $1, ..., $9.

(?:x)

Matches 'x' but does not remember the match. These are called non-
capturing parentheses. The matched substring can not be recalled from the
resulting array's elements [1], ..., [n] or from the predefined RegExp
object's properties $1, ..., $9.

x(?=y)

Matches 'x' only if 'x' is followed by 'y'. For example, /Jack(?=Sprat)/
matches 'Jack' only if it is followed by 'Sprat'. /Jack(?=Sprat|Frost)/matches
'Jack' only if it is followed by 'Sprat' or 'Frost'. However, neither 'Sprat' nor
'Frost' is part of the match results.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/regexp.html (4 of 24) [9/16/2004 9:54:59 AM]

Core JavaScript Reference 1.5:

x(?!y)

Matches 'x' only if 'x' is not followed by 'y'. For example, /\d+(?!\.)/
matches a number only if it is not followed by a decimal point.
/\d+(?!\.)/.exec("3.141") matches 141 but not 3.141.

x|y

Matches either 'x' or 'y'.

For example, /green|red/ matches 'green' in "green apple" and 'red' in "red
apple."

{n}

Where n is a positive integer. Matches exactly n occurrences of the
preceding item.

For example, /a{2}/ doesn't match the 'a' in "candy," but it matches all of
the a's in "caandy," and the first two a's in "caaandy."

{n,}

Where n is a positive integer. Matches at least n occurrences of the
preceding item.

For example, /a{2,} doesn't match the 'a' in "candy", but matches all of the
a's in "caandy" and in "caaaaaaandy."

{n,m}

Where n and m are positive integers. Matches at least n and at most m
occurrences of the preceding item.

For example, /a{1,3}/ matches nothing in "cndy", the 'a' in "candy," the
first two a's in "caandy," and the first three a's in "caaaaaaandy". Notice
that when matching "caaaaaaandy", the match is "aaa", even though the
original string had more a's in it.

[xyz]

A character set. Matches any one of the enclosed characters. You can
specify a range of characters by using a hyphen.

For example, [abcd] is the same as [a-c]. They match the 'b' in "brisket"
and the 'c' in "ache".

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/regexp.html (5 of 24) [9/16/2004 9:54:59 AM]

Core JavaScript Reference 1.5:

[^xyz]

A negated or complemented character set. That is, it matches anything that
is not enclosed in the brackets. You can specify a range of characters by
using a hyphen.

For example, [^abc] is the same as [^a-c]. They initially match 'r' in
"brisket" and 'h' in "chop."

[\b]

Matches a backspace. (Not to be confused with \b.)

\b

Matches a word boundary, such as a space. (Not to be confused with [\b].)

For example, /\bn\w/ matches the 'no' in "noonday";/\wy\b/ matches the 'ly'
in "possibly yesterday."

\B

Matches a non-word boundary.

For example, /\w\Bn/ matches 'on' in "noonday", and /y\B\w/ matches 'ye'
in "possibly yesterday."

\cX

Where X is a letter from A - Z. Matches a control character in a string.

For example, /\cM/ matches control-M in a string.

\d

Matches a digit character. Equivalent to [0-9].

For example, /\d/ or /[0-9]/ matches '2' in "B2 is the suite number."

\D

Matches any non-digit character. Equivalent to [^0-9].

For example, /\D/ or /[^0-9]/ matches 'B' in "B2 is the suite number."

\f

Matches a form-feed.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/regexp.html (6 of 24) [9/16/2004 9:54:59 AM]

Core JavaScript Reference 1.5:

\n

Matches a linefeed.

\r

Matches a carriage return.

\s

Matches a single white space character, including space, tab, form feed,
line feed. Equivalent to [\f\n\r\t\u00A0\u2028\u2029].

For example, /\s\w*/ matches ' bar' in "foo bar."

\S

Matches a single character other than white space. Equivalent to
[^ \f\n\r\t\u00A0\u2028\u2029].

For example, /\S/\w* matches 'foo' in "foo bar."

\t

Matches a tab.

\v

Matches a vertical tab.

\w

Matches any alphanumeric character including the underscore. Equivalent
to [A-Za-z0-9_].

For example, /\w/ matches 'a' in "apple," '5' in "$5.28," and '3' in "3D."

\W

Matches any non-word character. Equivalent to [^A-Za-z0-9_].

For example, /\W/ or /[^$A-Za-z0-9_]/ matches '%' in "50%."

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/regexp.html (7 of 24) [9/16/2004 9:54:59 AM]

Core JavaScript Reference 1.5:

\n

Where n is a positive integer. A back reference to the last substring
matching the n parenthetical in the regular expression (counting left
parentheses).

For example, /apple(,)\sorange\1/ matches 'apple, orange', in "apple,
orange, cherry, peach." A more complete example follows this table.

\0

Matches a NUL character. Do not follow this with another digit.

\xhh

Matches the character with the code hh (two hexadecimal digits)

\uhhhh

Matches the character with code hhhh (four hexadecimal digits).

The literal notation provides compilation of the regular expression when the expression
is evaluated. Use literal notation when the regular expression will remain constant. For
example, if you use literal notation to construct a regular expression used in a loop, the
regular expression won't be recompiled on each iteration.

The constructor of the regular expression object, for example, new RegExp("ab+c"),
provides runtime compilation of the regular expression. Use the constructor function
when you know the regular expression pattern will be changing, or you don't know the
pattern and are getting it from another source, such as user input.

A separate predefined RegExp object is available in each window; that is, each separate
thread of JavaScript execution gets its own RegExp object. Because each script runs to
completion without interruption in a thread, this assures that different scripts do not
overwrite values of the RegExp object.

Property Summary
Note that several of the RegExp properties have both long and short (Perl-like) names.
Both names always refer to the same value. Perl is the programming language from
which JavaScript modeled its regular expressions.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/regexp.html (8 of 24) [9/16/2004 9:54:59 AM]

Core JavaScript Reference 1.5:

Property Description

constructor

Specifies the function that creates an object's prototype.

global

Whether to test the regular expression against all possible
matches in a string, or only against the first. As of JavaScript
1.5, a property of a RegExp instance, not the RegExp object.

ignoreCase

Whether to ignore case while attempting a match in a string. As
of JavaScript 1.5, a property of a RegExp instance, not the
RegExp object.

lastIndex

The index at which to start the next match. As of JavaScript
1.5, a property of a RegExp instance, not the RegExp object.

multiline

Whether or not to search in strings across multiple lines. As of
JavaScript 1.5, a property of a RegExp instance, not the
RegExp object.

prototype

Allows the addition of properties to all objects.

source The text of the pattern. As of JavaScript 1.5, a property of a
RegExp instance, not the RegExp object.

Method Summary

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/regexp.html (9 of 24) [9/16/2004 9:54:59 AM]

Core JavaScript Reference 1.5:

Method Description

exec

Executes a search for a match in its string parameter.

test

Tests for a match in its string parameter.

toSource

Returns an object literal representing the specified object; you can
use this value to create a new object. Overrides the
Object.toSource method.

toString

Returns a string representing the specified object. Overrides the
Object.toString method.

In addition, this object inherits the watch and unwatch methods from Object.

Examples
Example 1. The following script uses the replace method to switch the words in the
string. In the replacement text, the script uses "$1" and "$2" to indicate the results of the
corresponding matching parentheses in the regular expression pattern.

<SCRIPT>
re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr=str.replace(re, "$2, $1");
document.write(newstr)
</SCRIPT>

This displays "Smith, John".

Example 2. In the following example, RegExp.input is set by the Change event. In the
getInfo function, the exec method uses the value of RegExp.input as its argument.

file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/regexp.html (10 of 24) [9/16/2004 9:54:59 AM]

Core JavaScript Reference 1.5:

<HTML>

<SCRIPT>
function getInfo() {
 re = /(\w+)\s(\d+)/;
 var m = re.exec();
 window.alert(m[] + ", your age is " + m[2]);
}
</SCRIPT>

Enter your first name and your age, and then press Enter.

<FORM>
<INPUT TYPE:"TEXT" NAME="NameAge" onChange="getInfo(this);">
</FORM>

</HTML>

constructor

Specifies the function that creates an object's prototype. Note that the value of this
property is a reference to the function itself, not a string containing the function's name.

Property of RegExp

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Description
See Object.constructor.

file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/regexp.html (11 of 24) [9/16/2004 9:54:59 AM]

Core JavaScript Reference 1.5:

exec

Executes the search for a match in a specified string. Returns a result array.

Method of RegExp

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA 262, Edition 3 (first syntax only)

Syntax
regexp.exec([str])
regexp([str])

Parameters

regexp

The name of the regular expression. It can be a variable name or a
literal.

str

The string against which to match the regular expression.

Description
As shown in the syntax description, a regular expression's exec method can be called
either directly, (with regexp.exec(str)) or indirectly (with regexp(str)).

file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/regexp.html (12 of 24) [9/16/2004 9:54:59 AM]

Core JavaScript Reference 1.5:

If you are executing a match simply to find true or false, use the test method or the
String search method.

If the match succeeds, the exec method returns an array and updates properties of the
regular expression object. If the match fails, the exec method returns null.

Consider the following example:

<SCRIPT LANGUAGE="JavaScript1.2">
//Match one d followed by one or more b's followed by one d
//Remember matched b's and the following d
//Ignore case
myRe=/d(b+)(d)/ig;
myArray = myRe.exec("cdbBdbsbz");
</SCRIPT>

The following table shows the results for this script:

Object Property/Index Description Example

myArray The contents of
myArray.

["dbBd", "bB", "d"]

index

The 0-based index of the
match in the string.

1

input

The original string. cdbBdbsbz

file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/regexp.html (13 of 24) [9/16/2004 9:54:59 AM]

Core JavaScript Reference 1.5:

[0]

The last matched
characters.

dbBd

[1], ...[n]

The parenthesized
substring matches, if
any. The number of
possible parenthesized
substrings is unlimited.

[1] = bB
[2] = d

myRe lastIndex

The index at which to
start the next match.

5

ignoreCase

Indicates if the "i" flag
was used to ignore case.

true

global

Indicates if the "g" flag
was used for a global
match.

true

multiline

Indicates if the "m" flag
was used for a global
match.

false

source

The text of the pattern. d(b+)(d)

If your regular expression uses the "g" flag, you can use the exec method multiple times
to find successive matches in the same string. When you do so, the search starts at the
substring of str specified by the regular expression's lastIndex property. For example,
assume you have this script:

<SCRIPT LANGUAGE="JavaScript1.2">
myRe=/ab*/g;

file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/regexp.html (14 of 24) [9/16/2004 9:54:59 AM]

Core JavaScript Reference 1.5:

str = "abbcdefabh";
myArray = myRe.exec(str);
document.writeln("Found " + myArray[0] +
 ". Next match starts at " + myRe.lastIndex)
mySecondArray = myRe.exec(str);
document.writeln("Found " + mySecondArray[0] +
 ". Next match starts at " + myRe.lastIndex)
</SCRIPT>

This script displays the following text:

Found abb. Next match starts at 3
Found ab. Next match starts at 9

Examples
In the following example, the user enters a name and the script executes a match against
the input. It then cycles through the array to see if other names match the user's name.

This script assumes that first names of registered party attendees are preloaded into the
array A, perhaps by gathering them from a party database.

<HTML>

<SCRIPT LANGUAGE="JavaScript1.2">
A = ["Frank", "Emily", "Jane", "Harry", "Nick", "Beth", "Rick",
 "Terrence", "Carol", "Ann", "Terry", "Frank", "Alice", "Rick",
 "Bill", "Tom", "Fiona", "Jane", "William", "Joan", "Beth"]

function lookup() {
 firstName = /\w+/i();
 if (!firstName)
 window.alert (RegExp.input + " isn't a name!");
 else {
 count = 0;
 for (i=0; i<A.length; i++)
 if (firstName[0].toLowerCase() == A[i].toLowerCase()) count++;
 if (count ==1)
 midstring = " other has ";
 else
 midstring = " others have ";
 window.alert ("Thanks, " + count + midstring + "the same name!")
 }
}

file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/regexp.html (15 of 24) [9/16/2004 9:54:59 AM]

Core JavaScript Reference 1.5:

</SCRIPT>

Enter your first name and then press Enter.

<FORM> <INPUT TYPE:"TEXT" NAME="FirstName" onChange="lookup(this);"> </
FORM>

</HTML>

global

Whether or not the "g" flag is used with the regular expression.

Property of RegExp instances

Read-only

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA 262, Edition 3

Description
global is a property of an individual regular expression object.

The value of global is true if the "g" flag was used; otherwise, false. The "g" flag
indicates that the regular expression should be tested against all possible matches in a
string.

You cannot change this property directly.

file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/regexp.html (16 of 24) [9/16/2004 9:54:59 AM]

Core JavaScript Reference 1.5:

ignoreCase

Whether or not the "i" flag is used with the regular expression.

Property of RegExp instances

Read-only

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA 262, Edition 3

Description
ignoreCase is a property of an individual regular expression object.

The value of ignoreCase is true if the "i" flag was used; otherwise, false. The "i" flag
indicates that case should be ignored while attempting a match in a string.

You cannot change this property directly.

lastIndex

A read/write integer property that specifies the index at which to start the next match.

Property of RegExp instances

Implemented in JavaScript 1.2, NES 3.0

file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/regexp.html (17 of 24) [9/16/2004 9:54:59 AM]

Core JavaScript Reference 1.5:

ECMA version ECMA 262, Edition 3

Description
lastIndex is a property of an individual regular expression object.

This property is set only if the regular expression used the "g" flag to indicate a global
search. The following rules apply:

●

● If lastIndex is greater than the length of the string, regexp.test and regexp.exec
fail, and lastIndex is set to 0.

● If lastIndex is equal to the length of the string and if the regular expression
matches the empty string, then the regular expression matches input starting at
lastIndex .

● If lastIndex is equal to the length of the string and if the regular expression does
not match the empty string, then the regular expression mismatches input, and
lastIndex is reset to 0.

● Otherwise, lastIndex is set to the next position following the most recent match.

For example, consider the following sequence of statements:

re = /(hi)?/g

Matches the empty string.

re("hi")

Returns ["hi", "hi"] with lastIndex equal to 2.

file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/regexp.html (18 of 24) [9/16/2004 9:54:59 AM]

Core JavaScript Reference 1.5:

re("hi")

Returns [""], an empty array whose zeroth element is the
match string. In this case, the empty string because lastIndex
was 2 (and still is 2) and "hi" has length 2.

multiline

Reflects whether or not to search in strings across multiple lines.

Property of RegExp instances

Static

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA 262, Edition 3

Description
multiline is a property of an individual regular expression object..

The value of multiline is true if the "m" flag was used; otherwise, false. The "m" flag
indicates that a multiline input string should be treated as multiple lines. For example, if
"m" is used, "^" and "$" change from matching at only the start or end of the entire
string to the start or end of any line within the string.

You cannot change this property directly.

prototype

Represents the prototype for this class. You can use the prototype to add properties or

file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/regexp.html (19 of 24) [9/16/2004 9:54:59 AM]

Core JavaScript Reference 1.5:

methods to all instances of a class. For information on prototypes, see
Function.prototype.

Property of RegExp

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

source

A read-only property that contains the text of the pattern, excluding the forward slashes.

Property of RegExp instances

Read-only

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA 262, Edition 3

Description
source is a property of an individual regular expression object.

You cannot change this property directly.

file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/regexp.html (20 of 24) [9/16/2004 9:54:59 AM]

Core JavaScript Reference 1.5:

test

Executes the search for a match between a regular expression and a specified string.
Returns true or false.

Method of RegExp

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA 262, Edition 3

Syntax
regexp.test([str])

Parameters

regexp

The name of the regular expression. It can be a variable name or a
literal.

str

The string against which to match the regular expression.

Description
When you want to know whether a pattern is found in a string use the test method
(similar to the String.search method); for more information (but slower execution) use

file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/regexp.html (21 of 24) [9/16/2004 9:54:59 AM]

Core JavaScript Reference 1.5:

the exec method (similar to the String.match method).

Example
The following example prints a message which depends on the success of the test:

function testinput(re, str){
 if (re.test(str))
 midstring = " contains ";
 else
 midstring = " does not contain ";
 document.write (str + midstring + re.source);
}

toSource

Returns a string representing the source code of the object.

Method of RegExp

Implemented in JavaScript 1.3

Syntax
toSource()

Parameters
None

Description
The toSource method returns the following values:

●

● For the built-in RegExp object, toSource returns the following string indicating

file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/regexp.html (22 of 24) [9/16/2004 9:54:59 AM]

Core JavaScript Reference 1.5:

that the source code is not available:

 function Boolean() {
 [native code]
 }

● For instances of RegExp, toSource returns a string representing the source code.

This method is usually called internally by JavaScript and not explicitly in code.

See also
Object.toSource

toString

Returns a string representing the specified object.

Method of RegExp

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA 262, Edition 3

Syntax
toString()

Parameters
None.

Description
The RegExp object overrides the toString method of the Object object; it does not

file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/regexp.html (23 of 24) [9/16/2004 9:54:59 AM]

Core JavaScript Reference 1.5:

inherit Object.toString. For RegExp objects, the toString method returns a string
representation of the object.

Examples
The following example displays the string value of a RegExp object:

myExp = new RegExp("a+b+c");
alert(myExp.toString()) displays "/a+b+c/"

See also
Object.toString

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My...t/JavaScript/Netscape/JS15/Refrence/regexp.html (24 of 24) [9/16/2004 9:54:59 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5:

Previous Contents Index Next

Core JavaScript Reference 1.5

String

An object representing a series of characters in a string.

Core object

Implemented in JavaScript 1.0: Create a String object only by quoting
characters.

JavaScript 1.1, NES 2.0: added String constructor; added
prototype property; added split method; added ability to
pass strings among scripts in different windows or frames
(in previous releases, you had to add an empty string to
another window's string to refer to it).

JavaScript 1.2, NES 3.0: added concat, match, replace,
search, slice, and substr methods.

JavaScript 1.3: added toSource method; changed
charCodeAt, fromCharCode, and replace methods.

ECMA version ECMA-262

Created by
The String constructor:

new String(string)

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (1 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

Parameters

string

Any string.

Description
The String object is a wrapper around the string primitive data type. Do not confuse a
string literal with the String object. For example, the following code creates the string
literal s1 and also the String object s2:

s1 = "foo" // creates a string literal value
s2 = new String("foo") // creates a String object

You can call any of the methods of the String object on a string literal value-JavaScript
automatically converts the string literal to a temporary String object, calls the method,
then discards the temporary String object. You can also use the String.length property
with a string literal.

You should use string literals unless you specifically need to use a String object,
because String objects can have counterintuitive behavior. For example:

s1 = "2 + 2" // creates a string literal value
s2 = new String("2 + 2") // creates a String object
eval(s1) // returns the number 4
eval(s2) // returns the string "2 + 2"

A string can be represented as a literal enclosed by single or double quotation marks; for
example, "Netscape" or `Netscape'.

You can convert the value of any object into a string using the top-level String function.

Property Summary

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (2 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

Property Description

constructor

Specifies the function that creates an object's prototype.

length

Reflects the length of the string.

prototype

Allows the addition of properties to a String object.

Method Summary

Method Description

anchor

Creates an HTML anchor that is used as a hypertext target.

big

Causes a string to be displayed in a big font as if it were in
a BIG tag.

blink

Causes a string to blink as if it were in a BLINK tag.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (3 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

bold

Causes a string to be displayed as if it were in a B tag.

charAt

Returns the character at the specified index.

charCodeAt

Returns a number indicating the Unicode value of the
character at the given index.

concat

Combines the text of two strings and returns a new string.

fixed

Causes a string to be displayed in fixed-pitch font as if it
were in a TT tag.

fontcolor

Causes a string to be displayed in the specified color as if it
were in a tag.

fontsize

Causes a string to be displayed in the specified font size as
if it were in a tag.

fromCharCode

Returns a string created by using the specified sequence of
Unicode values. This is a method on the String class, not on
a String instance.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (4 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

indexOf

Returns the index within the calling String object of the
first occurrence of the specified value, or -1 if not found.

italics

Causes a string to be italic, as if it were in an I tag.

lastIndexOf

Returns the index within the calling String object of the last
occurrence of the specified value, or -1 if not found.

link

Creates an HTML hypertext link that requests another
URL.

match

Used to match a regular expression against a string.

replace

Used to find a match between a regular expression and a
string, and to replace the matched substring with a new
substring.

search

Executes the search for a match between a regular
expression and a specified string.

slice

Extracts a section of a string and returns a new string.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (5 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

small

Causes a string to be displayed in a small font, as if it were
in a SMALL tag.

split

Splits a String object into an array of strings by separating
the string into substrings.

strike

Causes a string to be displayed as struck-out text, as if it
were in a STRIKE tag.

sub

Causes a string to be displayed as a subscript, as if it were
in a SUB tag.

substr

Returns the characters in a string beginning at the specified
location through the specified number of characters.

substring

Returns the characters in a string between two indexes into
the string.

sup

Causes a string to be displayed as a superscript, as if it were
in a SUP tag.

toLowerCase

Returns the calling string value converted to lowercase.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (6 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

toSource

Returns an object literal representing the specified object;
you can use this value to create a new object. Overrides the
Object.toSource method.

toString

Returns a string representing the specified object. Overrides
the Object.toString method.

toUpperCase

Returns the calling string value converted to uppercase.

valueOf

Returns the primitive value of the specified object.
Overrides the Object.valueOf method.

In addition, this object inherits the watch and unwatch methods from Object.

Examples
Example 1: String literal. The following statement creates a string literal:

var last_name = "Schaefer"

Example 2: String literal properties. The following statements evaluate to 8,
"SCHAEFER," and "schaefer":

last_name.length
last_name.toUpperCase()
last_name.toLowerCase()

Example 3: Accessing individual characters in a string. You can think of a string as
an array of characters. In this way, you can access the individual characters in the string
by indexing that array. For example, the following code displays "The first character in
the string is H":

var myString = "Hello"
myString[0] // returns "H"

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (7 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

Example 4: Pass a string among scripts in different windows or frames. The
following code creates two string variables and opens a second window:

var lastName = "Schaefer"
var firstName = "Jesse"
empWindow=window.open('string2.html','window1','width=300,height=300')

If the HTML source for the second window (string2.html) creates two string variables,
empLastName and empFirstName, the following code in the first window assigns
values to the second window's variables:

empWindow.empFirstName=firstName
empWindow.empLastName=lastName

The following code in the first window displays the values of the second window's
variables:

alert('empFirstName in empWindow is ' + empWindow.empFirstName)
alert('empLastName in empWindow is ' + empWindow.empLastName)

anchor

Creates an HTML anchor that is used as a hypertext target.

Method of String

Implemented in JavaScript 1.0, NES 2.0

Syntax
anchor(nameAttribute)

Parameters

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (8 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

nameAttribute

A string.

Description
Use the anchor method with the document.write or document.writeln methods to
programmatically create and display an anchor in a document. Create the anchor with
the anchor method, and then call write or writeln to display the anchor in a document. In
server-side JavaScript, use the write function to display the anchor.

In the syntax, the text string represents the literal text that you want the user to see. The
nameAttribute string represents the NAME attribute of the A tag.

Anchors created with the anchor method become elements in the document.anchors
array.

Examples
The following example opens the msgWindow window and creates an anchor for the
table of contents:

var myString="Table of Contents"
msgWindow.document.writeln(myString.anchor("contents_anchor"))

The previous example produces the same output as the following HTML:

Table of Contents

See also
String.link

big

Causes a string to be displayed in a big font as if it were in a BIG tag.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (9 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

Method of String

Implemented in JavaScript 1.0, NES 2.0

Syntax
big()

Parameters
None

Description
Use the big method with the write or writeln methods to format and display a string in a
document. In server-side JavaScript, use the write function to display the string.

Examples
The following example uses string methods to change the size of a string:

var worldString="Hello, world"

document.write(worldString.small())
document.write("<P>" + worldString.big())
document.write("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>

See also
String.fontsize, String.small

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (10 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

blink

Causes a string to blink as if it were in a BLINK tag.

Method of String

Implemented in JavaScript 1.0, NES 2.0

Syntax
blink()

Parameters
None

Description
Use the blink method with the write or writeln methods to format and display a string in
a document. In server-side JavaScript, use the write function to display the string.

Examples
The following example uses string methods to change the formatting of a string:

var worldString="Hello, world"

document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (11 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

See also
String.bold, String.italics, String.strike

bold

Causes a string to be displayed as bold as if it were in a B tag.

Method of String

Implemented in JavaScript 1.0, NES 2.0

Syntax
bold()

Parameters
None

Description
Use the bold method with the write or writeln methods to format and display a string in
a document. In server-side JavaScript, use the write function to display the string.

Examples
The following example uses string methods to change the formatting of a string:

var worldString="Hello, world"
document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:
file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (12 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also
String.blink, String.italics, String.strike

charAt

Returns the specified character from the string.

Method of String

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
charAt(index)

Parameters

index

An integer between 0 and 1 less than the length of the string.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (13 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

Description
Characters in a string are indexed from left to right. The index of the first character is 0,
and the index of the last character in a string called stringName is stringName.length -
1. If the index you supply is out of range, JavaScript returns an empty string.

Examples
The following example displays characters at different locations in the string "Brave
new world":

var anyString="Brave new world"

document.writeln("The character at index 0 is " + anyString.charAt(0))
document.writeln("The character at index 1 is " + anyString.charAt(1))
document.writeln("The character at index 2 is " + anyString.charAt(2))
document.writeln("The character at index 3 is " + anyString.charAt(3))
document.writeln("The character at index 4 is " + anyString.charAt(4))

These lines display the following:

The character at index 0 is B
The character at index 1 is r
The character at index 2 is a
The character at index 3 is v
The character at index 4 is e

See also
String.indexOf, String.lastIndexOf, String.split

charCodeAt

Returns a number indicating the Unicode value of the character at the given index.

Method of String

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (14 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

Implemented in JavaScript 1.2, NES 3.0

JavaScript 1.3: returns a Unicode value rather than an ISO-
Latin-1 value.

ECMA version ECMA-262

Syntax
charCodeAt([index])

Parameters

index

An integer between 0 and 1 less than the length of the string. The
default value is 0.

Description
Unicode values range from 0 to 65,535. The first 128 Unicode values are a direct match
of the ASCII character set. For information on Unicode, see the Core JavaScript Guide.

Backward Compatibility

JavaScript 1.2. The charCodeAt method returns a number indicating the ISO-Latin-1
codeset value of the character at the given index. The ISO-Latin-1 codeset ranges from
0 to 255. The first 0 to 127 are a direct match of the ASCII character set.

Example
The following example returns 65, the Unicode value for A.

"ABC".charCodeAt(0) // returns 65

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (15 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

concat

Combines the text of two or more strings and returns a new string.

Method of String

Implemented in JavaScript 1.2, NES 3.0

Syntax
concat(string2, string3[, ..., stringN])

Parameters

string2...
stringN

Strings to concatenate to this string.

Description
concat combines the text from one or more strings and returns a new string. Changes to
the text in one string do not affect the other string.

Example
The following example combines two strings into a new string.

s1="Oh "
s2="what a beautiful "

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (16 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

s3="mornin'."
s4=s1.concat(s2,s3) // returns "Oh what a beautiful mornin'."

constructor

Specifies the function that creates an object's prototype. Note that the value of this
property is a reference to the function itself, not a string containing the function's name.

Property of String

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Description
See Object.constructor.

fixed

Causes a string to be displayed in fixed-pitch font as if it were in a TT tag.

Method of String

Implemented in JavaScript 1.0, NES 2.0

Syntax
file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (17 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

fixed()

Parameters
None

Description
Use the fixed method with the write or writeln methods to format and display a string in
a document. In server-side JavaScript, use the write function to display the string.

Examples
The following example uses the fixed method to change the formatting of a string:

var worldString="Hello, world"
document.write(worldString.fixed())

The previous example produces the same output as the following HTML:

<TT>Hello, world</TT>

fontcolor

Causes a string to be displayed in the specified color as if it were in a <FONT
COLOR=color> tag.

Method of String

Implemented in JavaScript 1.0, NES 2.0

Syntax
fontcolor(color)

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (18 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

Parameters

color

A string expressing the color as a hexadecimal RGB triplet or as a
string literal. String literals for color names are listed in the Core
JavaScript Guide.

Description
Use the fontcolor method with the write or writeln methods to format and display a
string in a document. In server-side JavaScript, use the write function to display the
string.

If you express color as a hexadecimal RGB triplet, you must use the format rrggbb. For
example, the hexadecimal RGB values for salmon are red=FA, green=80, and blue=72,
so the RGB triplet for salmon is "FA8072".

The fontcolor method overrides a value set in the fgColor property.

Examples
The following example uses the fontcolor method to change the color of a string:

var worldString="Hello, world"

document.write(worldString.fontcolor("maroon") +
 " is maroon in this line")
document.write("<P>" + worldString.fontcolor("salmon") +
 " is salmon in this line")
document.write("<P>" + worldString.fontcolor("red") +
 " is red in this line")

document.write("<P>" + worldString.fontcolor("8000") +
 " is maroon in hexadecimal in this line")
document.write("<P>" + worldString.fontcolor("FA8072") +
 " is salmon in hexadecimal in this line")
document.write("<P>" + worldString.fontcolor("FF00") +
 " is red in hexadecimal in this line")

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (19 of 57) [9/16/2004 9:55:04 AM]

file:///devedge-srce/library/manuals/2000/javascript/1.5/guide/
file:///devedge-srce/library/manuals/2000/javascript/1.5/guide/

Core JavaScript Reference 1.5:

The previous example produces the same output as the following HTML:

Hello, world is maroon in this line
<P>Hello, world is salmon in this line
<P>Hello, world is red in this line

Hello, world
is maroon in hexadecimal in this line
<P>Hello, world
is salmon in hexadecimal in this line
<P>Hello, world
is red in hexadecimal in this line

fontsize

Causes a string to be displayed in the specified font size as if it were in a <FONT
SIZE=size> tag.

Method of String

Implemented in JavaScript 1.0, NES 2.0

Syntax
fontsize(size)

Parameters

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (20 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

size

An integer between 1 and 7, a string representing a signed integer
between 1 and 7.

Description
Use the fontsize method with the write or writeln methods to format and display a string
in a document. In server-side JavaScript, use the write function to display the string.

When you specify size as an integer, you set the size of stringName to one of the 7
defined sizes. When you specify size as a string such as "-2", you adjust the font size of
stringName relative to the size set in the BASEFONT tag.

Examples
The following example uses string methods to change the size of a string:

var worldString="Hello, world"

document.write(worldString.small())
document.write("<P>" + worldString.big())
document.write("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>

See also
String.big, String.small

fromCharCode

Returns a string created by using the specified sequence of Unicode values.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (21 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

Method of String

Static

Implemented in JavaScript 1.2, NES 3.0

JavaScript 1.3: uses a Unicode value rather than an ISO-
Latin-1 value.

ECMA version ECMA-262

Syntax
fromCharCode(num1, ..., numN)

Parameters

num1, ..., numN

A sequence of numbers that are Unicode values.

Description
This method returns a string and not a String object.

Because fromCharCode is a static method of String, you always use it as
String.fromCharCode(), rather than as a method of a String object you created.

Backward Compatibility

JavaScript 1.2. The fromCharCode method returns a string created by using the
specified sequence of ISO-Latin-1 codeset values.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (22 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

Examples
The following example returns the string "ABC".

String.fromCharCode(65,66,67)

indexOf

Returns the index within the calling String object of the first occurrence of the specified
value, starting the search at fromIndex, or -1 if the value is not found.

Method of String

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
indexOf(searchValue[, fromIndex])

Parameters

searchValue

A string representing the value to search for.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (23 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

fromIndex

The location within the calling string to start the search from.
It can be any integer between 0 and the length of the string.
The default value is 0.

Description
Characters in a string are indexed from left to right. The index of the first character is 0,
and the index of the last character of a string called stringName is stringName.length -
1.

"Blue Whale".indexOf("Blue") // returns 0
"Blue Whale".indexOf("Blute") // returns -1
"Blue Whale".indexOf("Whale",0) // returns 5
"Blue Whale".indexOf("Whale",5) // returns 5
"Blue Whale".indexOf("",9) // returns 9
"Blue Whale".indexOf("",10) // returns 10
"Blue Whale".indexOf("",11) // returns 10

The indexOf method is case sensitive. For example, the following expression returns -1:

"Blue Whale".indexOf("blue")

Examples
Example 1. The following example uses indexOf and lastIndexOf to locate values in
the string "Brave new world."

var anyString="Brave new world"

// Displays 8
document.write("<P>The index of the first w from the beginning is " +
 anyString.indexOf("w"))
// Displays 10
document.write("<P>The index of the first w from the end is " +
 anyString.lastIndexOf("w"))
// Displays 6
document.write("<P>The index of 'new' from the beginning is " +
 anyString.indexOf("new"))
// Displays 6
document.write("<P>The index of 'new' from the end is " +
 anyString.lastIndexOf("new"))

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (24 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

Example 2. The following example defines two string variables. The variables contain
the same string except that the second string contains uppercase letters. The first writeln
method displays 19. But because the indexOf method is case sensitive, the string
"cheddar" is not found in myCapString, so the second writeln method displays -1.

myString="brie, pepper jack, cheddar"
myCapString="Brie, Pepper Jack, Cheddar"
document.writeln('myString.indexOf("cheddar") is ' +
 myString.indexOf("cheddar"))
document.writeln('<P>myCapString.indexOf("cheddar") is ' +
 myCapString.indexOf("cheddar"))

Example 3. The following example sets count to the number of occurrences of the letter
x in the string str:

count = 0;
pos = str.indexOf("x");
while (pos != -1) {
 count++;
 pos = str.indexOf("x",pos+1);
}

See also
String.charAt, String.lastIndexOf, String.split

italics

Causes a string to be italic, as if it were in an <I> tag.

Method of String

Implemented in JavaScript 1.0, NES 2.0

Syntax

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (25 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

italics()

Parameters
None

Description
Use the italics method with the write or writeln methods to format and display a string
in a document. In server-side JavaScript, use the write function to display the string.

Examples
The following example uses string methods to change the formatting of a string:

var worldString="Hello, world"

document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also
String.blink, String.bold, String.strike

lastIndexOf

Returns the index within the calling String object of the last occurrence of the specified
value, or -1 if not found. The calling string is searched backward, starting at fromIndex.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (26 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

Method of String

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
lastIndexOf(searchValue[, fromIndex])

Parameters

searchValue

A string representing the value to search for.

fromIndex

The location within the calling string to start the search from.
It can be any integer between 0 and the length of the string.
The default value is the length of the string.

Description
Characters in a string are indexed from left to right. The index of the first character is 0,
and the index of the last character is stringName.length - 1.

"canal".lastIndexOf("a") // returns 3
"canal".lastIndexOf("a",2) // returns 1
"canal".lastIndexOf("a",0) // returns -1
"canal".lastIndexOf("x") // returns -1

The lastIndexOf method is case sensitive. For example, the following expression returns
-1:

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (27 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

"Blue Whale, Killer Whale".lastIndexOf("blue")

Examples
The following example uses indexOf and lastIndexOf to locate values in the string
"Brave new world."

var anyString="Brave new world"

// Displays 8
document.write("<P>The index of the first w from the beginning is " +
 anyString.indexOf("w"))
// Displays 10
document.write("<P>The index of the first w from the end is " +
 anyString.lastIndexOf("w"))
// Displays 6
document.write("<P>The index of 'new' from the beginning is " +
 anyString.indexOf("new"))
// Displays 6
document.write("<P>The index of 'new' from the end is " +
 anyString.lastIndexOf("new"))

See also
String.charAt, String.indexOf, String.split

length

The length of the string.

Property of String

Read-only

Implemented in JavaScript 1.0, NES 2.0

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (28 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

ECMA version ECMA-262

Description
For a null string, length is 0.

Examples
The following example displays 8 in an Alert dialog box:

var x="Netscape"
alert("The string length is " + x.length)

link

Creates an HTML hypertext link that requests another URL.

Method of String

Implemented in JavaScript 1.0, NES 2.0

Syntax
link(hrefAttribute)

Parameters

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (29 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

hrefAttribute

Any string that specifies the HREF attribute of the A tag; it
should be a valid URL (relative or absolute).

Description
Use the link method to programmatically create a hypertext link, and then call write or
writeln to display the link in a document. In server-side JavaScript, use the write
function to display the link.

Links created with the link method become elements in the links array of the document
object. See document.links.

Examples
The following example displays the word "Netscape" as a hypertext link that returns the
user to the Netscape home page:

var hotText="Netscape"
var URL="http://home.netscape.com"

document.write("Click to return to " + hotText.link(URL))

The previous example produces the same output as the following HTML:

Click to return to Netscape

match

Used to match a regular expression against a string.

Method of String

Implemented in JavaScript 1.2

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (30 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

ECMA version ECMA-262 Edition 3

Syntax
match(regexp)

Parameters

regexp

Name of the regular expression. It can be a variable name or a
literal.

Description
If the regular expression does not include the g flag, returns the same result that
RegExp.exec would return on the regular expression and string. If the regular
expression includes the g flag, returns an array of all the matches of the regular
expression in the string.

Note If you execute a match simply to find true or false, use String.search or the regular
expression test method.

Examples
Example 1. In the following example, match is used to find 'Chapter' followed by 1 or
more numeric characters followed by a decimal point and numeric character 0 or more
times. The regular expression includes the i flag so that case will be ignored.

<SCRIPT>
str = "For more information, see Chapter 3.4.5.1";
re = /(chapter \d+(\.\d)*)/i;
found = str.match(re);
document.write(found);
</SCRIPT>

This returns the array containing Chapter 3.4.5.1,Chapter 3.4.5.1,.1
file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (31 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

'Chapter 3.4.5.1' is the first match and the first value remembered from (Chapter
\d+(\.\d)*).

'.1' is the second value remembered from (\.\d).

Example 2. The following example demonstrates the use of the global and ignore case
flags with match.

<SCRIPT>
str = "abcDdcba";
newArray = str.match(/d/gi);
document.write(newArray);
</SCRIPT>

The returned array contains D, d.

prototype

Represents the prototype for this class. You can use the prototype to add properties or
methods to all instances of a class. For information on prototypes, see
Function.prototype.

Property of String

Implemented in JavaScript 1.1, NES 3.0

ECMA version ECMA-262

replace

Finds a match between a regular expression and a string, and replaces the matched
substring with a new substring.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (32 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

Method of String

Implemented in JavaScript 1.2

JavaScript 1.3: added the ability to specify a function as
the second parameter.

ECMA version ECMA-262 Edition 3

Syntax
replace(regexp, newSubStr)
replace(regexp, function)

Versions prior to JavaScript 1.3:

replace(regexp, newSubStr)

Parameters

regexp

The name of the regular expression. It can be a variable name
or a literal.

newSubStr

The string to put in place of the string found with regexp.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (33 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

function

A function to be invoked after the match has been performed.

Description
This method does not change the String object it is called on. It simply returns a new
string.

If you want to execute a global search and replace, include the g flag in the regular
expression.

Specifying a string as a parameter. The replacement string can include the following
special replacement patterns:

$$ Inserts a '$'.

$& Inserts the matched substring..

$` Inserts the portion of the string that precedes the matched substring.

$´ Inserts the portion of the string that follows the matched substring.

$n
or
$nn

Where n or nn are decimal digits, inserts the nth parenthesized
submatch string.

Specifying a function as a parameter. When you specify a function as the second
parameter, the function is invoked after the match has been performed. (The use of a
function in this manner is often called a lambda expression.)

In your function, you can dynamically generate the string that replaces the matched

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (34 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

substring. The result of the function call is used as the replacement value.

The nested function can use the matched substrings to determine the new string
(newSubStr) that replaces the found substring. You get the matched substrings through
the parameters of your function. The first parameter of your function holds the complete
matched substring. The following n parameters can be used for parenthetical matches,
remembered submatch strings, where n is the number of submatch strings in the regular
expression. Finally, the last two parameters are the offset within the string where the
match occurred and the string itself. For example, the following replace method returns
XX.zzzz - XX , zzzz.

"XXzzzz".replace(/(X*)(z*)/,
 function (str, p1, p2, offset, s) {
 return str + " - " + p1 + " , " + p2;
 }
)

Backward Compatibility

JavaScript 1.2. You cannot specify a function to be invoked after the match has been
performed.

Examples
Example 1. In the following example, the regular expression includes the global and
ignore case flags which permits replace to replace each occurrence of 'apples' in the
string with 'oranges.'

<SCRIPT>
re = /apples/gi;
str = "Apples are round, and apples are juicy.";
newstr=str.replace(re, "oranges");
document.write(newstr)
</SCRIPT>

This prints "oranges are round, and oranges are juicy."

Example 2. In the following example, the regular expression is defined in replace and
includes the ignore case flag.

<SCRIPT>
str = "Twas the night before Xmas...";
newstr=str.replace(/xmas/i, "Christmas");

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (35 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

document.write(newstr)
</SCRIPT>

This prints "Twas the night before Christmas..."

Example 3. The following script switches the words in the string. For the replacement
text, the script uses the $1 and $2 replacement patterns.

<SCRIPT LANGUAGE="JavaScript1.2">
re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr = str.replace(re, "$2, $1");
document.write(newstr)
</SCRIPT>

This prints "Smith, John".

Example 4. The following example replaces a Fahrenheit degree with its equivalent
Celsius degree. The Fahrenheit degree should be a number ending with F. The function
returns the Celsius number ending with C. For example, if the input number is 212F, the
function returns 100C. If the number is 0F, the function returns -17.77777777777778C.

The regular expression test checks for any number that ends with F. The number of
Fahrenheit degree is accessible to your function through the parameter $1. The function
sets the Celsius number based on the Fahrenheit degree passed in a string to the f2c
function. f2c then returns the Celsius number. This function approximates Perl's s///e
flag.

function f2c(x) {
 var s = String(x)
 var test = /(\d+(?:\.\d*)?)F\b/g
 return s.replace
 (test,
 function (str,p1,offset,s) {
 return ((p1-32) * 5/9) + "C";
 }
)
}

search

Executes the search for a match between a regular expression and this String object.
file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (36 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

Method of String

Implemented in JavaScript 1.2

ECMA version ECMA-262 Edition 3

Syntax
search(regexp)

Parameters

regexp

Name of the regular expression. It can be a variable name or a
literal.

Description
If successful, search returns the index of the regular expression inside the string.
Otherwise, it returns -1.

When you want to know whether a pattern is found in a string use search (similar to the
regular expression test method); for more information (but slower execution) use match
(similar to the regular expression exec method).

Example
The following example prints a message which depends on the success of the test.

function testinput(re, str){
file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (37 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

 if (str.search(re) != -1)
 midstring = " contains ";
 else
 midstring = " does not contain ";
 document.write (str + midstring + re.source);
}

slice

Extracts a section of a string and returns a new string.

Method of String

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262 Edition 3

Syntax
slice(beginslice[, endSlice])

Parameters

beginSlice

The zero-based index at which to begin extraction.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (38 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

endSlice

The zero-based index at which to end extraction. If omitted,
slice extracts to the end of the string.

Description
slice extracts the text from one string and returns a new string. Changes to the text in
one string do not affect the other string.

slice extracts up to but not including endSlice. string.slice(1,4) extracts the second
character through the fourth character (characters indexed 1, 2, and 3).

As a negative index, endSlice indicates an offset from the end of the string.
string.slice(2,-1) extracts the third character through the second to last character in the
string.

Example
The following example uses slice to create a new string.

<SCRIPT>
str1="The morning is upon us. "
str2=str1.slice(3,-5)
document.write(str2)
</SCRIPT>

This writes:

morning is upon

small

Causes a string to be displayed in a small font, as if it were in a <SMALL> tag.

Method of String

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (39 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

Implemented in JavaScript 1.0, NES 2.0

Syntax
small()

Parameters
None

Description
Use the small method with the write or writeln methods to format and display a string in
a document. In server-side JavaScript, use the write function to display the string.

Examples
The following example uses string methods to change the size of a string:

var worldString="Hello, world"

document.write(worldString.small())
document.write("<P>" + worldString.big())
document.write("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>

See also
String.big, String.fontsize

split

Splits a String object into an array of strings by separating the string into substrings.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (40 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

Method of String

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262 (if separator is a string)
ECMA-262 Edition 3 (if separator is a regular expression)

Syntax
split([separator][, limit])

Parameters

separator

Specifies the character to use for separating the string. The
separator is treated as a string or a regular expression. If separator
is omitted, the array returned contains one element consisting of
the entire string.

limit

Integer specifying a limit on the number of splits to be found.

Description
The split method returns the new array.

When found, separator is removed from the string and the substrings are returned in an
array. If separator is omitted, the array contains one element consisting of the entire
string.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (41 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

In JavaScript 1.2 or later, split has the following additions:

●

● It can take a regular expression argument, as well as a fixed string, by which to
split the object string. If separator is a regular expression, any included
parenthesis cause submatches to be included in the returned array.

● It can take a limit count so that the resulting array does not include trailing
empty elements.

● If you specify LANGUAGE="JavaScript1.2" in the SCRIPT tag, string.split(" ")
splits on any run of 1 or more white space characters including spaces, tabs, line
feeds, and carriage returns. For this behavior, LANGUAGE="JavaScript1.2"
must be specified in the <SCRIPT> tag.

Examples
Example 1. The following example defines a function that splits a string into an array
of strings using the specified separator. After splitting the string, the function displays
messages indicating the original string (before the split), the separator used, the number
of elements in the array, and the individual array elements.

function splitString (stringToSplit,separator) {
 arrayOfStrings = stringToSplit.split(separator)
 document.write ('<P>The original string is: "' + stringToSplit + '"')
 document.write ('
The separator is: "' + separator + '"')
 document.write ("
The array has " + arrayOfStrings.length + " elements: ")

 for (var i=0; i < arrayOfStrings.length; i++) {
 document.write (arrayOfStrings[i] + " / ")
 }
}

var tempestString="Oh brave new world that has such people in it."
var monthString="Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec"

var space=" "
var comma=","

splitString(tempestString,space)
splitString(tempestString)
splitString(monthString,comma)

This example produces the following output:
file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (42 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

The original string is: "Oh brave new world that has such people in it."
The separator is: " "
The array has 10 elements: Oh / brave / new / world / that / has / such / people / in / it. /

The original string is: "Oh brave new world that has such people in it."
The separator is: "undefined"
The array has 1 elements: Oh brave new world that has such people in it. /

The original string is: "Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec"
The separator is: ","
The array has 12 elements: Jan / Feb / Mar / Apr / May / Jun / Jul / Aug / Sep / Oct /
Nov / Dec /

Example 2. Consider the following script:

<SCRIPT LANGUAGE="JavaScript1.2">
str="She sells seashells \nby the\n seashore"
document.write(str + "
")
a=str.split(" ")
document.write(a)
</SCRIPT>

Using LANGUAGE="JavaScript1.2", this script produces

"She", "sells", "seashells", "by", "the", "seashore"

Without LANGUAGE="JavaScript1.2", this script splits only on single space
characters, producing

"She", "sells", , , , "seashells", "by", , , "the", "seashore"

Example 3. In the following example, split looks for 0 or more spaces followed by a
semicolon followed by 0 or more spaces and, when found, removes the spaces from the
string. nameList is the array returned as a result of split.

<SCRIPT>
names = "Harry Trump ;Fred Barney; Helen Rigby ; Bill Abel ;Chris Hand ";
document.write (names + "
" + "
");
re = /\s*;\s*/;
nameList = names.split (re);
document.write(nameList);
</SCRIPT>

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (43 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

This prints two lines; the first line prints the original string, and the second line prints
the resulting array.

Harry Trump ;Fred Barney; Helen Rigby ; Bill Abel ;Chris Hand
Harry Trump,Fred Barney,Helen Rigby,Bill Abel,Chris Hand

Example 4. In the following example, split looks for 0 or more spaces in a string and
returns the first 3 splits that it finds.

<SCRIPT LANGUAGE="JavaScript1.2">
myVar = " Hello World. How are you doing? ";
splits = myVar.split(" ", 3);
document.write(splits)
</SCRIPT>

This script displays the following:

["Hello", "World.", "How"]

See also
String.charAt, String.indexOf, String.lastIndexOf

strike

Causes a string to be displayed as struck-out text, as if it were in a <STRIKE> tag.

Method of String

Implemented in JavaScript 1.0, NES 2.0

Syntax
strike()

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (44 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

Parameters
None

Description
Use the strike method with the write or writeln methods to format and display a string in
a document. In server-side JavaScript, use the write function to display the string.

Examples
The following example uses string methods to change the formatting of a string:

var worldString="Hello, world"

document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also
String.blink, String.bold, String.italics

sub

Causes a string to be displayed as a subscript, as if it were in a <SUB> tag.

Method of String

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (45 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

Implemented in JavaScript 1.0, NES 2.0

Syntax
sub()

Parameters
None

Description
Use the sub method with the write or writeln methods to format and display a string in a
document. In server-side JavaScript, use the write function to generate the HTML.

Examples
The following example uses the sub and sup methods to format a string:

var superText="superscript"
var subText="subscript"

document.write("This is what a " + superText.sup() + " looks like.")
document.write("<P>This is what a " + subText.sub() + " looks like.")

The previous example produces the same output as the following HTML:

This is what a ^{superscript} looks like.
<P>This is what a _{subscript} looks like.

See also
String.sup

substr

Returns the characters in a string beginning at the specified location through the
specified number of characters.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (46 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

Method of String

Implemented in JavaScript 1.0, NES 2.0

Syntax
substr(start[, length])

Parameters

start

Location at which to begin extracting characters.

length

The number of characters to extract.

Description
start is a character index. The index of the first character is 0, and the index of the last
character is 1 less than the length of the string. substr begins extracting characters at
start and collects length number of characters.

If start is positive and is the length of the string or longer, substr returns no characters.

If start is negative, substr uses it as a character index from the end of the string. If start
is negative and abs(start) is larger than the length of the string, substr uses 0 is the start
index.

If length is 0 or negative, substr returns no characters. If length is omitted, start extracts
characters to the end of the string.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (47 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

Example
Consider the following script:

<SCRIPT LANGUAGE="JavaScript1.2">

str = "abcdefghij"
document.writeln("(1,2): ", str.substr(1,2))
document.writeln("(-2,2): ", str.substr(-2,2))
document.writeln("(1): ", str.substr(1))
document.writeln("(-20, 2): ", str.substr(1,20))
document.writeln("(20, 2): ", str.substr(20,2))

</SCRIPT>

This script displays:

(1,2): bc
(-2,2): ij
(1): bcdefghij
(-20, 2): bcdefghij
(20, 2):

See also
substring

substring

Returns a subset of a String object.

Method of String

Implemented in JavaScript 1.0, NES 2.0

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (48 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

ECMA version ECMA-262

Syntax
substring(indexA, indexB)

Parameters

indexA

An integer between 0 and 1 less than the length of the string.

indexB

An integer between 0 and 1 less than the length of the string.

Description
substring extracts characters from indexA up to but not including indexB. In particular:

●

● If indexA is less than 0, indexA is treated as if it were 0.

● If indexB is greater than stringName.length, indexB is treated as if it were
stringName.length.

● If indexA equals indexB, substring returns an empty string.

● If indexB is omitted, indexA extracts characters to the end of the string.

In JavaScript 1.2, using LANGUAGE="JavaScript1.2" in the SCRIPT tag,

●

● If indexA is greater than indexB, JavaScript produces a runtime error (out of

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (49 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

memory).

In JavaScript 1.2, without LANGUAGE="JavaScript1.2" in the SCRIPT tag,

●

● If indexA is greater than indexB, JavaScript returns a substring beginning with
indexB and ending with indexA - 1.

Examples
Example 1. The following example uses substring to display characters from the string
"Netscape":

var anyString="Netscape"

// Displays "Net"
document.write(anyString.substring(0,3))
document.write(anyString.substring(3,0))
// Displays "cap"
document.write(anyString.substring(4,7))
document.write(anyString.substring(7,4))
// Displays "Netscap"
document.write(anyString.substring(0,7))
// Displays "Netscape"
document.write(anyString.substring(0,8))
document.write(anyString.substring(0,10))

Example 2. The following example replaces a substring within a string. It will replace
both individual characters and substrings. The function call at the end of the example
changes the string "Brave New World" into "Brave New Web".

function replaceString(oldS,newS,fullS) {
// Replaces oldS with newS in the string fullS
 for (var i=0; i<fullS.length; i++) {
 if (fullS.substring(i,i+oldS.length) == oldS) {
 fullS = fullS.substring(0,i)+newS+fullS.substring(i+oldS.length,fullS.length)
 }
 }
 return fullS
}

replaceString("World","Web","Brave New World")

Example 3. In JavaScript 1.2, using LANGUAGE="JavaScript1.2", the following script
file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (50 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

produces a runtime error (out of memory).

<SCRIPT LANGUAGE="JavaScript1.2">
str="Netscape"
document.write(str.substring(0,3);
document.write(str.substring(3,0);
</SCRIPT>

Without LANGUAGE="JavaScript1.2", the above script prints the following:

Net Net

In the second write, the index numbers are swapped.

See also
substr

sup

Causes a string to be displayed as a superscript, as if it were in a <SUP> tag.

Method of String

Implemented in JavaScript 1.0, NES 2.0

Syntax
sup()

Parameters
None

Description

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (51 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

Use the sup method with the write or writeln methods to format and display a string in a
document. In server-side JavaScript, use the write function to generate the HTML.

Examples
The following example uses the sub and sup methods to format a string:

var superText="superscript"
var subText="subscript"

document.write("This is what a " + superText.sup() + " looks like.")
document.write("<P>This is what a " + subText.sub() + " looks like.")

The previous example produces the same output as the following HTML:

This is what a ^{superscript} looks like.
<P>This is what a _{subscript} looks like.

See also
String.sub

toLowerCase

Returns the calling string value converted to lowercase.

Method of String

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
toLowerCase()

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (52 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

Parameters
None

Description
The toLowerCase method returns the value of the string converted to lowercase.
toLowerCase does not affect the value of the string itself.

Examples
The following example displays the lowercase string "alphabet":

var upperText="ALPHABET"
document.write(upperText.toLowerCase())

See also
String.toUpperCase

toSource

Returns a string representing the source code of the object.

Method of String

Implemented in JavaScript 1.3

Syntax
toSource()

Parameters
None

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (53 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

Description
The toSource method returns the following values:

●

● For the built-in String object, toSource returns the following string indicating
that the source code is not available:

 function String() {
 [native code]
 }

● For instances of String or string literals, toSource returns a string representing
the source code.

This method is usually called internally by JavaScript and not explicitly in code.

toString

Returns a string representing the specified object.

Method of String

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Syntax
toString()

Parameters
None.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (54 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

Description
The String object overrides the toString method of the Object object; it does not inherit
Object.toString. For String objects, the toString method returns a string representation
of the object.

Examples
The following example displays the string value of a String object:

x = new String("Hello world");
alert(x.toString()) // Displays "Hello world"

See also
Object.toString

toUpperCase

Returns the calling string value converted to uppercase.

Method of String

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
toUpperCase()

Parameters
None

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (55 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

Description
The toUpperCase method returns the value of the string converted to uppercase.
toUpperCase does not affect the value of the string itself.

Examples
The following example displays the string "ALPHABET":

var lowerText="alphabet"
document.write(lowerText.toUpperCase())

See also
String.toLowerCase

valueOf

Returns the primitive value of a String object.

Method of String

Implemented in JavaScript 1.1

ECMA version ECMA-262

Syntax
valueOf()

Parameters
None

Description
file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (56 of 57) [9/16/2004 9:55:04 AM]

Core JavaScript Reference 1.5:

The valueOf method of String returns the primitive value of a String object as a string
data type. This value is equivalent to String.toString.

This method is usually called internally by JavaScript and not explicitly in code.

Examples
x = new String("Hello world");
alert(x.valueOf()) // Displays "Hello world"

See also
String.toString, Object.valueOf

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/string.html (57 of 57) [9/16/2004 9:55:04 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5:

Previous Contents Index Next

Core JavaScript Reference 1.5

sun

A top-level object used to access any Java class in the package sun.*.

Core object

Implemented in JavaScript 1.1, NES 2.0

Created by
The sun object is a top-level, predefined JavaScript object. You can automatically
access it without using a constructor or calling a method.

Description
The sun object is a convenience synonym for the property Packages.sun.

See also
Packages, Packages.sun

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%20D.../Acrobat/JavaScript/Netscape/JS15/Refrence/sun.html [9/16/2004 9:55:07 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5: 2 Top-Level Properties and Functions

Previous Contents Index Next

Core JavaScript Reference 1.5

Chapter 2 Chapter 2 Top-Level Properties and Functions

This chapter contains all JavaScript properties and functions not associated with any
object. In the ECMA specification, these properties and functions are referred to as
properties and methods of the global object.

The following table summarizes the top-level properties.

Table 2.1 Top-level properties

Property Description

Infinity

A numeric value representing infinity.

NaN

A value representing Not-A-Number.

undefined

The value undefined.

The following table summarizes the top-level functions.

Table 2.2 Top-level functions

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/toplev.html (1 of 23) [9/16/2004 9:55:11 AM]

Core JavaScript Reference 1.5: 2 Top-Level Properties and Functions

Function Description

decodeURI

Decodes a URI which has been encoded with encodeURI.

decodeURIComponent

Decodes a URI which has been encoded with
encodeURIComponent

encodeURI

Computes a new version of a complete URI replacing each
instance of certain characters with escape sequences
representing the UTF-8 encoding of the characters.

encodeURIComponent

Computes a new version of components of a URI replacing
each instance of certain characters with escape sequences
representing the UTF-8 encoding of the characters.

eval

Evaluates a string of JavaScript code without reference to a
particular object.

isFinite

Evaluates an argument to determine whether it is a finite
number.

isNaN

Evaluates an argument to determine if it is not a number.

Number

Converts an object to a number.

parseFloat

Parses a string argument and returns a floating-point number.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/toplev.html (2 of 23) [9/16/2004 9:55:11 AM]

Core JavaScript Reference 1.5: 2 Top-Level Properties and Functions

parseInt

Parses a string argument and returns an integer.

String

Converts an object to a string.

decodeURI

Decodes a Uniform Resource Identifier (URI) previously created by encodeURI or by a
similar routine.

Core function

Implemented in JavaScript 1.5, NES 6.0

ECMA version ECMA-262 Edition 3.

Syntax
decodeURI(encodedURI)

Parameters

encodedUri

A complete, encoded Uniform Resource Identifier.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/toplev.html (3 of 23) [9/16/2004 9:55:11 AM]

Core JavaScript Reference 1.5: 2 Top-Level Properties and Functions

Description
Replaces each escape sequence in the encoded URI with the character that it represents.

Does not decode escape sequences that could not have been introduced by encodeURI.

See also
decodeURIComponent, encodeURI, encodeURIComponent

decodeURIComponent

Decodes a Uniform Resource Identifier (URI) component previously created by
encodeURIComponent or by a similar routine.

Core function

Implemented in JavaScript 1.5, NES 6.0

ECMA version ECMA-262 Edition 3.

Syntax
decodeURIComponent(encodedURI)

Parameters

encodedUri

An encoded component of a Uniform Resource Identifier.

Description

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/toplev.html (4 of 23) [9/16/2004 9:55:11 AM]

Core JavaScript Reference 1.5: 2 Top-Level Properties and Functions

Replaces each escape sequence in the encoded URI component with the character that it
represents.

See also
decodeURI, encodeURI, encodeURIComponent

encodeURI

Encodes a Uniform Resource Identifier (URI) by replacing each instance of certain
characters by one, two, or three escape sequences representing the UTF-8 encoding of
the character.

Core function

Implemented in JavaScript 1.5, NES 6.0

ECMA version ECMA-262 Edition 3.

Syntax
encodeURI(uri)

Parameters

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/toplev.html (5 of 23) [9/16/2004 9:55:11 AM]

Core JavaScript Reference 1.5: 2 Top-Level Properties and Functions

uri

A complete Uniform Resource Identifier.

Description
Assumes that the URI is a complete URI, so does not encode reserved characters that
have special meaning in the URI.

encodeURI replaces all characters except the following with the appropriate UTF-8
escape sequences:

.

reserved characters , / ? : @ & = + $,

unescaped characters alphabetic, decimal digits, - _ . ! ~ * ' ()

score #

See also
decodeURI, eval, encodeURIComponent

encodeURIComponent

Encodes a Uniform Resource Identifier (URI) component by replacing each instance of
certain characters by one, two, or three escape sequences representing the UTF-8
encoding of the character.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/toplev.html (6 of 23) [9/16/2004 9:55:11 AM]

Core JavaScript Reference 1.5: 2 Top-Level Properties and Functions

Core function

Implemented in JavaScript 1.5, NES 6.0

ECMA version ECMA-262 Edition 3.

Syntax
encodeURIComponent(uri)

Parameters

uri

A component of a Uniform Resource Identifier.

Description
Assumes that the URI is a URI component rather than a complete URI, so does not treat
reserved characters as if they have special meaning and encodes them. See encodeURI
for the list of reserved characters.

encodeURIComponent replaces all characters except the following with the appropriate
UTF-8 escape sequences:

.

unescaped characters alphabetic, decimal digits, - _ . ! ~ * ' ()

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/toplev.html (7 of 23) [9/16/2004 9:55:11 AM]

Core JavaScript Reference 1.5: 2 Top-Level Properties and Functions

score #

See also
decodeURI, eval, encodeURI

eval

Evaluates a string of JavaScript code without reference to a particular object.

Core function

Implemented in JavaScript 1.0

JavaScript 1.4: eval cannot be called indirectly

ECMA version ECMA-262

Syntax
eval(string)

Parameters

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/toplev.html (8 of 23) [9/16/2004 9:55:11 AM]

Core JavaScript Reference 1.5: 2 Top-Level Properties and Functions

string

A string representing a JavaScript expression, statement, or sequence
of statements. The expression can include variables and properties of
existing objects.

Description
eval is a top-level function and is not associated with any object.

The argument of the eval function is a string. If the string represents an expression, eval
evaluates the expression. If the argument represents one or more JavaScript statements,
eval performs the statements. Do not call eval to evaluate an arithmetic expression;
JavaScript evaluates arithmetic expressions automatically.

If you construct an arithmetic expression as a string, you can use eval to evaluate it at a
later time. For example, suppose you have a variable x. You can postpone evaluation of
an expression involving x by assigning the string value of the expression, say
"3 * x + 2", to a variable, and then calling eval at a later point in your script.

If the argument of eval is not a string, eval returns the argument unchanged. In the
following example, the String constructor is specified, and eval returns a String object
rather than evaluating the string.

eval(new String("2+2")) // returns a String object containing "2+2"
eval("2+2") // returns 4

You cannot indirectly use the eval function by invoking it via a name other than eval; if
you do, a runtime error might occur. For example, you should not use the following
code:

var x = 2
var y = 4
var myEval = eval
myEval("x + y")

Backward Compatibility

JavaScript 1.3 and earlier versions. You can use eval indirectly, although it is
discouraged.

JavaScript 1.1. eval is also a method of all objects. This method is described for the

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/toplev.html (9 of 23) [9/16/2004 9:55:11 AM]

Core JavaScript Reference 1.5: 2 Top-Level Properties and Functions

Object class.

Examples
The following examples display output using document.write. In server-side JavaScript,
you can display the same output by calling the write function instead of using
document.write.

Example 1. In the following code, both of the statements containing eval return 42. The
first evaluates the string "x + y + 1"; the second evaluates the string "42".

var x = 2
var y = 39
var z = "42"
eval("x + y + 1") // returns 42
eval(z) // returns 42

Example 2. In the following example, the getFieldName(n) function returns the name
of the specified form element as a string. The first statement assigns the string value of
the third form element to the variable field. The second statement uses eval to display
the value of the form element.

var field = getFieldName(3)
document.write("The field named ", field, " has value of ",
 eval(field + ".value"))

Example 3. The following example uses eval to evaluate the string str. This string
consists of JavaScript statements that open an Alert dialog box and assign z a value of
42 if x is five, and assigns 0 to z otherwise. When the second statement is executed, eval
will cause these statements to be performed, and it will also evaluate the set of
statements and return the value that is assigned to z.

var str = "if (x == 5) {alert('z is 42'); z = 42;} else z = 0; "
document.write("<P>z is ", eval(str))

Example 4. In the following example, the setValue function uses eval to assign the
value of the variable newValue to the text field textObject:

function setValue (textObject, newValue) {
 eval ("document.forms[0]." + textObject + ".value") = newValue
}

See also
file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/toplev.html (10 of 23) [9/16/2004 9:55:11 AM]

Core JavaScript Reference 1.5: 2 Top-Level Properties and Functions

Object.eval method

Infinity

A numeric value representing infinity.

Core property

Implemented in JavaScript 1.3 (In previous versions, Infinity was defined
only as a property of the Number object.)

ECMA version ECMA-262

Syntax
Infinity

Description
Infinity is a top-level property and is not associated with any object.

The initial value of Infinity is Number.POSITIVE_INFINITY. The value Infinity
(positive infinity) is greater than any other number including itself. This value behaves
mathematically like infinity; for example, anything multiplied by Infinity is Infinity, and
anything divided by Infinity is 0.

See also
Number.NEGATIVE_INFINITY , Number.POSITIVE_INFINITY

isFinite

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/toplev.html (11 of 23) [9/16/2004 9:55:11 AM]

Core JavaScript Reference 1.5: 2 Top-Level Properties and Functions

Evaluates an argument to determine whether it is a finite number.

Core function

Implemented in JavaScript 1.3

ECMA version ECMA-262

Syntax
isFinite(number)

Parameters

number

The number to evaluate.

Description
isFinite is a top-level function and is not associated with any object.

You can use this method to determine whether a number is a finite number. The isFinite
method examines the number in its argument. If the argument is NaN, positive infinity
or negative infinity, this method returns false, otherwise it returns true.

Examples
You can check a client input to determine whether it is a finite number.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/toplev.html (12 of 23) [9/16/2004 9:55:11 AM]

Core JavaScript Reference 1.5: 2 Top-Level Properties and Functions

if(isFinite(ClientInput) == true)
{
 /* take specific steps */
}

See also
Number.NEGATIVE_INFINITY , Number.POSITIVE_INFINITY

isNaN

Evaluates an argument to determine if it is not a number.

Core function

Implemented in JavaScript 1.0: Unix only

JavaScript 1.1, NES 2.0: all platforms

ECMA version ECMA-262

Syntax
isNaN(testValue)

Parameters

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/toplev.html (13 of 23) [9/16/2004 9:55:11 AM]

Core JavaScript Reference 1.5: 2 Top-Level Properties and Functions

testValue

The value you want to evaluate.

Description
isNaN is a top-level function and is not associated with any object.

The parseFloat and parseInt functions return NaN when they evaluate a value that is not
a number. isNaN returns true if passed NaN, and false otherwise.

Examples
The following example evaluates floatValue to determine if it is a number and then calls
a procedure accordingly:

floatValue=parseFloat(toFloat)

if (isNaN(floatValue)) {
 notFloat()
} else {
 isFloat()
}

See also
Number.NaN, parseFloat, parseInt

NaN

A value representing Not-A-Number.

Core property

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/toplev.html (14 of 23) [9/16/2004 9:55:11 AM]

Core JavaScript Reference 1.5: 2 Top-Level Properties and Functions

Implemented in JavaScript 1.3 (In previous versions, NaN was defined
only as a property of the Number object)

ECMA version ECMA-262

Syntax
NaN

Description
NaN is a top-level property and is not associated with any object.

The initial value of NaN is NaN.

NaN is always unequal to any other number, including NaN itself; you cannot check for
the not-a-number value by comparing to Number.NaN. Use the isNaN function instead.

Several JavaScript methods (such as the Number constructor, parseFloat, and parseInt)
return NaN if the value specified in the parameter is not a number.

You might use the NaN property to indicate an error condition for a function that should
return a valid number.

See also
isNaN, Number.NaN

Number

Converts the specified object to a number.

Core function

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/toplev.html (15 of 23) [9/16/2004 9:55:11 AM]

Core JavaScript Reference 1.5: 2 Top-Level Properties and Functions

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA-262

Syntax
Number(obj)

Parameter

obj

An object.

Description
Number is a top-level function and is not associated with any object.

When the object is a Date object, Number returns a value in milliseconds measured
from 01 January, 1970 UTC (GMT), positive after this date, negative before.

If obj is a string that does not contain a well-formed numeric literal, Number returns
NaN.

Example
The following example converts the Date object to a numerical value:

d = new Date ("December 17, 1995 03:24:00")
alert (Number(d))

This displays a dialog box containing "819199440000."

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/toplev.html (16 of 23) [9/16/2004 9:55:11 AM]

Core JavaScript Reference 1.5: 2 Top-Level Properties and Functions

See also
Number

parseFloat

Parses a string argument and returns a floating point number.

Core function

Implemented in JavaScript 1.0: If the first character of the string specified
in parseFloat(string) cannot be converted to a number,
returns NaN on Solaris and Irix and 0 on all other
platforms.

JavaScript 1.1, NES 2.0: Returns NaN on all platforms if
the first character of the string specified in
parseFloat(string) cannot be converted to a number.

ECMA version ECMA-262

Syntax
parseFloat(string)

Parameters

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/toplev.html (17 of 23) [9/16/2004 9:55:11 AM]

Core JavaScript Reference 1.5: 2 Top-Level Properties and Functions

string

A string that represents the value you want to parse.

Description
parseFloat is a top-level function and is not associated with any object.

parseFloat parses its argument, a string, and returns a floating point number. If it
encounters a character other than a sign (+ or -), numeral (0-9), a decimal point, or an
exponent, it returns the value up to that point and ignores that character and all
succeeding characters. Leading and trailing spaces are allowed.

If the first character cannot be converted to a number, parseFloat returns NaN.

For arithmetic purposes, the NaN value is not a number in any radix. You can call the
isNaN function to determine if the result of parseFloat is NaN. If NaN is passed on to
arithmetic operations, the operation results will also be NaN.

Examples
The following examples all return 3.14:

parseFloat("3.14")
parseFloat("314e-2")
parseFloat("0.0314E+2")
var x = "3.14"
parseFloat(x)

The following example returns NaN:

parseFloat("FF2")

See also
isNaN, parseInt

parseInt

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/toplev.html (18 of 23) [9/16/2004 9:55:11 AM]

Core JavaScript Reference 1.5: 2 Top-Level Properties and Functions

Parses a string argument and returns an integer of the specified radix or base.

Core function

Implemented in JavaScript 1.0: If the first character of the string specified
in parseInt(string) cannot be converted to a number,
returns NaN on Solaris and Irix and 0 on all other
platforms.

JavaScript 1.1, LiveWire 2.0: Returns NaN on all
platforms if the first character of the string specified in
parseInt(string) cannot be converted to a number.

ECMA version ECMA-262

Syntax
parseInt(string[, radix])

Parameters

string

A string that represents the value you want to parse.

radix

An integer that represents the radix of the return value.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/toplev.html (19 of 23) [9/16/2004 9:55:11 AM]

Core JavaScript Reference 1.5: 2 Top-Level Properties and Functions

Description
parseInt is a top-level function and is not associated with any object.

The parseInt function parses its first argument, a string, and attempts to return an integer
of the specified radix (base). For example, a radix of 10 indicates to convert to a
decimal number, 8 octal, 16 hexadecimal, and so on. For radixes above 10, the letters of
the alphabet indicate numerals greater than 9. For example, for hexadecimal numbers
(base 16), A through F are used.

If parseInt encounters a character that is not a numeral in the specified radix, it ignores
it and all succeeding characters and returns the integer value parsed up to that point.
parseInt truncates numbers to integer values. Leading and trailing spaces are allowed.

If the radix is not specified or is specified as 0, JavaScript assumes the following:

●

● If the input string begins with "0x", the radix is 16 (hexadecimal).

● If the input string begins with "0", the radix is eight (octal). This feature is
deprecated.

● If the input string begins with any other value, the radix is 10 (decimal).

If the first character cannot be converted to a number, parseInt returns NaN.

For arithmetic purposes, the NaN value is not a number in any radix. You can call the
isNaN function to determine if the result of parseInt is NaN. If NaN is passed on to
arithmetic operations, the operation results will also be NaN.

Examples
The following examples all return 15:

parseInt("F", 16)
parseInt("17", 8)
parseInt("15", 10)
parseInt(15.99, 10)
parseInt("FXX123", 16)
parseInt("1111", 2)
parseInt("15*3", 10)

The following examples all return NaN:

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/toplev.html (20 of 23) [9/16/2004 9:55:11 AM]

Core JavaScript Reference 1.5: 2 Top-Level Properties and Functions

parseInt("Hello", 8)
parseInt("0x7", 10)
parseInt("FFF", 10)

Even though the radix is specified differently, the following examples all return 17
because the input string begins with "0x".

parseInt("0x11", 16)
parseInt("0x11", 0)
parseInt("0x11")

See also
isNaN, parseFloat, Object.valueOf

String

Converts the specified object to a string.

Core function

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA-262

Syntax
String(obj)

Parameter

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/toplev.html (21 of 23) [9/16/2004 9:55:11 AM]

Core JavaScript Reference 1.5: 2 Top-Level Properties and Functions

obj

An object.

Description
String is a top-level function and is not associated with any object.

The String method converts the value of any object into a string; it returns the same
value as the toString method of an individual object.

When the object is a Date object, String returns a more readable string representation of
the date. Its format is: Thu Aug 18 04:37:43 Pacific Daylight Time 1983.

Example
The following example converts the Date object to a readable string.

D = new Date (430054663215)
alert (String(D))

This displays a dialog box containing "Thu Aug 18 04:37:43 GMT-0700 (Pacific
Daylight Time) 1983."

See also
String

undefined

The value undefined.

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/toplev.html (22 of 23) [9/16/2004 9:55:11 AM]

Core JavaScript Reference 1.5: 2 Top-Level Properties and Functions

Core property

Implemented in JavaScript 1.3

ECMA version ECMA-262

Syntax
undefined

Description
undefined is a top-level property and is not associated with any object.

A variable that has not been assigned a value is of type undefined. A method or
statement also returns undefined if the variable that is being evaluated does not have an
assigned value.

You can use undefined to determine whether a variable has a value. In the following
code, the variable x is not defined, and the if statement evaluates to true.

var x
if(x == undefined) {
 // these statements execute
}

undefined is also a primitive value.

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%...at/JavaScript/Netscape/JS15/Refrence/toplev.html (23 of 23) [9/16/2004 9:55:11 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5:

Previous Contents Index Next

Core JavaScript Reference 1.5

Part 2 Language Elements

Chapter 3 Statements
This chapter describes all JavaScript statements. JavaScript statements consist of
keywords used with the appropriate syntax. A single statement may span multiple lines.
Multiple statements may occur on a single line if each statement is separated by a
semicolon.

Chapter 4 Comments
This chapter describes the syntax for comments in JavaScript.

Chapter 5 Operators
JavaScript has assignment, comparison, arithmetic, bitwise, logical, string, and special
operators. This chapter describes the operators and contains information about operator
precedence.

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%20Do...obat/JavaScript/Netscape/JS15/Refrence/partlang.html [9/16/2004 9:55:13 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5: 3 Statements

Previous Contents Index Next

Core JavaScript Reference 1.5

Chapter 3 Chapter 3 Statements

This chapter describes all JavaScript statements. JavaScript statements consist of
keywords used with the appropriate syntax. A single statement may span multiple lines.
Multiple statements may occur on a single line if each statement is separated by a
semicolon.

Syntax conventions: All keywords in syntax statements are in bold. Words in italics
represent user-defined names or statements. Any portions enclosed in square brackets, [
], are optional. {statements} indicates a block of statements, which can consist of zero
or more statements delimited by a curly braces { }.

The following table lists statements available in JavaScript.

Table 3.1 JavaScript statements.

break

Terminates the current while or for loop and transfers program control to the
statement following the terminated loop.

const

Declares a global constant, optionally initializing it to a value.

continue

Terminates execution of the block of statements in a while or for loop, and
continues execution of the loop with the next iteration.

do...while

Executes the specified statements until the test condition evaluates to false.
Statements execute at least once.

file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/stmt.html (1 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

export

Allows a signed script to provide properties, functions, and objects to other
signed or unsigned scripts.

for

Creates a loop that consists of three optional expressions, enclosed in
parentheses and separated by semicolons, followed by a block of statements
executed in the loop.

for...in

Iterates a specified variable over all the properties of an object. For each
distinct property, JavaScript executes the specified statements.

function

Declares a function with the specified parameters. Acceptable parameters
include strings, numbers, and objects.

if...else

Executes a set of statements if a specified condition is true. If the condition
is false, another set of statements can be executed.

import

Allows a script to import properties, functions, and objects from a signed
script that has exported the information.

label

Provides an identifier that can be used with break or continue to indicate
where the program should continue execution.

return

Specifies the value to be returned by a function.

switch

Allows a program to evaluate an expression and attempt to match the
expression's value to a case label.

file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/stmt.html (2 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

throw

Throws a user-defined exception.

try...catch

Marks a block of statements to try, and specifies a response should an
exception be thrown.

var

Declares a variable, optionally initializing it to a value.

while

Creates a loop that evaluates an expression, and if it is true, executes a block
of statements. The loop then repeats, as long as the specified condition is
true.

with

Establishes the default object for a set of statements.

break

Use the break statement to terminate a loop, switch, or label statement.

Terminates the current loop, switch, or label statement and transfers program control to
the statement following the terminated loop.

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262 (for the unlabeled version)
ECMA-262, Edition 3 (for the labeled version)

file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/stmt.html (3 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

Syntax
break [label]

Parameter

label

Identifier associated with the label of the statement.

Description
The break statement includes an optional label that allows the program to break out of a
labeled statement. The statements in a labeled statement can be of any type.

Examples
The following function has a break statement that terminates the while loop when e is 3,
and then returns the value 3 * x.

function testBreak(x) {
 var i = 0;
 while (i < 6) {
 if (i == 3)
 break;
 i++;
 }
 return i*x;
}

See also
continue, label, switch

const

Declares a readonly, named constant.
file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/stmt.html (4 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

Implemented in JavaScript 1.5, NES 6.0 (Netscape extension, C engine
only),

Syntax
const constname [= value] [..., constname [= value]]

Parameters

varname

Constant name. It can be any legal identifier.

value

Value of the constant and can be any legal expression.

Description
Creates a constant that can be global or local to the function in which it is declared.
Constants follow the same scope rules as variables.

The value of a constant cannot change through re-assignment, and a constant cannot be
re-declared.

A constant cannot share the same name as a function or variable in the same scope.

Examples
The script:

const a = 7;

document.writeln("a is " + a + ".");

file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/stmt.html (5 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

produces the output:

a is 7.

continue

Restarts a while, do-while, for, or label statement.

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262 (for the unlabeled version)
ECMA-262, Edition 3 (for the labeled version)

Syntax
continue [label]

Parameter

label

Identifier associated with the label of the statement.

Description
In contrast to the break statement, continue does not terminate the execution of the loop
entirely: instead,

file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/stmt.html (6 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

● In a while loop, it jumps back to the condition.

● In a for loop, it jumps to the update expression.

The continue statement can now include an optional label that allows the program to
terminate execution of a labeled statement and continue to the specified labeled
statement. This type of continue must be in a looping statement identified by the label
used by continue.

Examples
Example 1. The following example shows a while loop that has a continue statement
that executes when the value of i is 3. Thus, n takes on the values 1, 3, 7, and 12.

i = 0;
n = 0;
while (i < 5) {
 i++;
 if (i == 3)
 continue;
 n += i;
}

Example 2. In the following example, a statement labeled checkiandj contains a
statement labeled checkj. If continue is encountered, the program continues at the top of
the checkj statement. Each time continue is encountered, checkj reiterates until its
condition returns false. When false is returned, the remainder of the checkiandj
statement is completed. checkiandj reiterates until its condition returns false. When false
is returned, the program continues at the statement following checkiandj.

If continue had a label of checkiandj, the program would continue at the top of the
checkiandj statement.

checkiandj :
while (i<4) {
 document.write(i + "
");
 i+=1;

 checkj :
 while (j>4) {
 document.write(j + "
");
 j-=1;
 if ((j%2)==0)

file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/stmt.html (7 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

 continue checkj;
 document.write(j + " is odd.
");
 }
 document.write("i = " + i + "
");
 document.write("j = " + j + "
");
}

See also
break, label

do...while

Executes the specified statements until the test condition evaluates to false. Statements
execute at least once.

Implemented in JavaScript 1.2, NES 3.0

ECMA Version ECMA 262, Edition 3

Syntax
do
 statements
while (condition);

Parameters

file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/stmt.html (8 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

statements

Block of statements that is executed at least once and is re-
executed each time the condition evaluates to true.

condition

Evaluated after each pass through the loop. If condition
evaluates to true, the statements in the preceding block are re-
executed. When condition evaluates to false, control passes to
the statement following do while.

Examples
In the following example, the do loop iterates at least once and reiterates until i is no
longer less than 5.

do {
 i+=1;
 document.write(i);
} while (i<5);

export

Allows a signed script to provide properties, functions, and objects to other signed or
unsigned scripts.

This feature is not in ECMA 262, Edition 3.

Implemented in JavaScript 1.2, NES 3.0

Syntax
export name1, name2, ..., nameN
export *

file:///C|/Documents%20and%20Settings/george/My%...obat/JavaScript/Netscape/JS15/Refrence/stmt.html (9 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

Parameters

nameN

List of properties, functions, and objects to be exported.

*

Exports all properties, functions, and objects from the script.

Description
Typically, information in a signed script is available only to scripts signed by the same
principals. By exporting properties, functions, or objects, a signed script makes this
information available to any script (signed or unsigned). The receiving script uses the
companion import statement to access the information.

See also
import

for

Creates a loop that consists of three optional expressions, enclosed in parentheses and
separated by semicolons, followed by a block of statements executed in the loop.

Implemented in JavaScript 1.0, NES 2.0

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (10 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

ECMA version ECMA-262

Syntax
for ([initial-expression]; [condition]; [increment-expression]) {
 statements
}

Parameters

initial-expression

Statement or variable declaration. Typically used to
initialize a counter variable. This expression may
optionally declare new variables with the var
keyword. These variables are local to the function,
not to the loop.

condition

Evaluated on each pass through the loop. If this
condition evaluates to true, the statements in
statements are performed. This conditional test is
optional. If omitted, the condition always evaluates
to true.

increment-expression

Generally used to update or increment the counter
variable.

statements

Block of statements that are executed as long as
condition evaluates to true. This can be a single
statement or multiple statements. Although not
required, it is good practice to indent these
statements from the beginning of the for statement.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (11 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

Examples
The following for statement starts by declaring the variable i and initializing it to 0. It
checks that i is less than nine, performs the two succeeding statements, and increments i
by 1 after each pass through the loop.

for (var i = 0; i < 9; i++) {
 n += i;
 myfunc(n);
}

for...in

Iterates a specified variable over all the properties of an object. For each distinct
property, JavaScript executes the specified statements.

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
for (variable in object) {
 statements
}

Parameters

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (12 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

variable

Variable to iterate over every property, optionally declared with
the var keyword. This variable is local to the function, not to the
loop.

object

Object for which the properties are iterated.

statements

Specifies the statements to execute for each property.

Examples
The following function takes as its argument an object and the object's name. It then
iterates over all the object's properties and returns a string that lists the property names
and their values.

function show_props(obj, objName) {
 var result = "";
 for (var i in obj) {
 result += objName + "." + i + " = " + obj[i] + "\n";
 }
 return result;
}

function

Declares a function with the specified parameters. Acceptable parameters include
strings, numbers, and objects.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (13 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.5, NES 6.0: added conditional function
declarations (Netscape extension).

ECMA version ECMA-262

Syntax
function name([param] [, param] [..., param]) {
 statements
}

You can also define functions using the Function constructor and the function operator;
see Function and function.

Parameters

name

The function name.

param

The name of an argument to be passed to the function. A
function can have up to 255 arguments.

statements

The statements which comprise the body of the function.

Description
To return a value, the function must have a return statement that specifies the value to

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (14 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

return.

A function created with the function statement is a Function object and has all the
properties, methods, and behavior of Function objects. See Function for detailed
information on functions.

Netscape supports conditional function declarations, whereby a function can be declared
based on the evaluation of a condition. If the condition evaluates to true, the function is
declared. Otherwise it is not declared.

A function can also be declared inside an expression. In this case the function is usually
anonymous. See page 254.

Examples
The following code declares a function that returns the total dollar amount of sales,
when given the number of units sold of products a, b, and c.

function calc_sales(units_a, units_b, units_c) {
 return units_a*79 + units_b*129 + units_c*699
}

In the following script, the one function is always declared. The zero function is
declared because 'if(1)' evaluates to true:

<SCRIPT language="JavaScript1.5">
<!--
function one()
 document.writeln("This is one.");
 if (1)
 function zero()
 {
 document.writeln("This is zero.");
 }
}
</SCRIPT>

However, if the script is changed so that the condition becomes 'if (0)', function zero is
not declared and cannot be invoked on the page.

See also
Function, function

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (15 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

if...else

Executes a set of statements if a specified condition is true. If the condition is false,
another set of statements can be executed.

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
if (condition) {
 statements1
}
[else {
 statements2
}]

Parameters

condition

Can be any JavaScript expression that evaluates to true or
false. Parentheses are required around the condition. If
condition evaluates to true, the statements in statements1 are
executed.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (16 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

statements1,
statements2

Can be any JavaScript statements, including further nested if
statements. Multiple statements must be enclosed in braces.

Description
You should not use simple assignments in a conditional statement. For example, do not
use the following code:

if(x = y)
{
 /* do the right thing */
}

If you need to use an assignment in a conditional statement, put additional parentheses
around the assignment. For example, use if((x = y)).

Examples
if (cipher_char == from_char) {
 result = result + to_char
 x++}
else
 result = result + clear_char

import

Allows a script to import properties, functions, and objects from a signed script that has
exported the information.

This feature is not in ECMA 262, Edition 3.

Implemented in JavaScript 1.2, NES 3.0

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (17 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

Syntax
import objectName.name1, objectName.name2, ..., objectName.nameN
import objectName.*

Parameters

objectName

Name of the object that will receive the imported names.

name1,
name2,
nameN

List of properties, functions, and objects to import from the
export file.

*

Imports all properties, functions, and objects from the export
script.

Description
The objectName parameter is the name of the object that will receive the imported
names. For example, if f and p have been exported, and if obj is an object from the
importing script, the following code makes f and p accessible in the importing script as
properties of obj.

import obj.f, obj.p

Typically, information in a signed script is available only to scripts signed by the same
principals. By exporting (using the export statement) properties, functions, or objects, a
signed script makes this information available to any script (signed or unsigned). The
receiving script uses the import statement to access the information.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (18 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

The script must load the export script into a window, frame, or layer before it can
import and use any exported properties, functions, and objects.

See also
export

label

Provides a statement with an identifier that lets you refer to it using a break or continue
statement.

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA 262, Edition 3

For example, you can use a label to identify a loop, and then use the break or continue
statements to indicate whether a program should interrupt the loop or continue its
execution.

Syntax
label :
 statement

Parameter

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (19 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

label

Any JavaScript identifier that is not a reserved word.

statement

Statements. break can be used with any labeled statement, and
continue can be used with looping labeled statements.

Examples
For an example of a label statement using break, see break. For an example of a label
statement using continue, see continue.

See also
break, continue

return

Specifies the value to be returned by a function.

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
return expression;

Parameters

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (20 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

expression

The expression to return.

Examples
The following function returns the square of its argument, x, where x is a number.

function square(x) {
 return x * x;
}

switch

Allows a program to evaluate an expression and attempt to match the expression's value
to a case label.

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA-262, Edition 3

Syntax
switch (expression){
 case label :
 statements;
 break;
 case label :
 statements;
 break;

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (21 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

 ...
 default : statements;
}

Parameters

expression

Value matched against label.

label

Identifier used to match against expression.

statements

Block of statements that is executed once if expression matches
label.

Description
If a match is found, the program executes the associated statement. If multiple cases
match the provided value, the first case that matches is selected, even if the cases are
not equal to each other.

The program first looks for a label matching the value of expression and then executes
the associated statement. If no matching label is found, the program looks for the
optional default statement, and if found, executes the associated statement. If no default
statement is found, the program continues execution at the statement following the end
of switch.

The optional break statement associated with each case label ensures that the program
breaks out of switch once the matched statement is executed and continues execution at
the statement following switch. If break is omitted, the program continues execution at
the next statement in the switch statement.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (22 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

Examples
In the following example, if expression evaluates to "Bananas", the program matches
the value with case "Bananas" and executes the associated statement. When break is
encountered, the program breaks out of switch and executes the statement following
switch. If break were omitted, the statement for case "Cherries" would also be executed.

switch (i) {
 case "Oranges" :
 document.write("Oranges are $0.59 a pound.
");
 break;
 case "Apples" :
 document.write("Apples are $0.32 a pound.
");
 break;
 case "Bananas" :
 document.write("Bananas are $0.48 a pound.
");
 break;
 case "Cherries" :
 document.write("Cherries are $3.00 a pound.
");
 break;
 default :
 document.write("Sorry, we are out of " + i + ".
");
}
document.write("Is there anything else you'd like?
");

throw

Throws a user-defined exception.

Implemented in JavaScript 1.4

ECMA version ECMA-262, Edition 3

Syntax

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (23 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

throw expression;

Parameters

expression

The value to throw.

Description
Use the throw statement to throw an exception. When you throw an exception, an
expression specifies the value of the exception. The following code throws several
exceptions.

throw "Error2"; // generates an exception with a string value
throw 42; // generates an exception with the value 42
throw true; // generates an exception with the value true

Examples

Example 1: Throw an object. You can specify an object when you throw an exception.
You can then reference the object's properties in the catch block. The following
example creates an object myUserException of type UserException and uses it in a
throw statement.

function UserException (message) {
 this.message=message;
 this.name="UserException";
}
function getMonthName (mo) {
 mo=mo-1; // Adjust month number for array index (1=Jan, 12=Dec)
 var months=new Array("Jan","Feb","Mar","Apr","May","Jun","Jul",
 "Aug","Sep","Oct","Nov","Dec");
 if (months[mo] != null) {
 return months[mo];
 } else {
 myUserException=new UserException("InvalidMonthNo");

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (24 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

 throw myUserException;
 }
}

try {
 // statements to try;
 monthName=getMonthName(myMonth)
}
catch (e) {
 monthName="unknown";
 logMyErrors(e.message,e.name); // pass exception object to err handler
}

Example 2: Throw an object. The following example tests an input string for a U.S.
zip code. If the zip code uses an invalid format, the throw statement throws an exception
by creating an object of type ZipCodeFormatException.

/*
 * Creates a ZipCode object.
 *
 * Accepted formats for a zip code are:
 * 12345
 * 12345-6789
 * 123456789
 * 12345 6789
 *
 * If the argument passed to the ZipCode constructor does not
 * conform to one of these patterns, an exception is thrown.
 */

function ZipCode(zip) {
 zip = new String(zip);
 pattern = /[0-9]{5}([-]?[0-9]{4})?/;
 if (pattern.test(zip)) {
 // zip code value will be the first match in the string
 this.value = zip.match(pattern)[0];
 this.valueOf = function (){return this.value};
 this.toString = function (){return String(this.value)};
 } else {
 throw new ZipCodeFormatException(zip);
 }
}

function ZipCodeFormatException(value) {
file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (25 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

 this.value = value;
 this.message =
 "does not conform to the expected format for a zip code";
 this.toString =
 function (){return this.value + this.message};
}

/*
 * This could be in a script that validates address data
 * for US addresses.
 */

var ZIPCODE_INVALID = -1;
var ZIPCODE_UNKNOWN_ERROR = -2;

function verifyZipCode(z) {
 try {
 z = new ZipCode(z);
 }
 catch (e) {
 if (e instanceof ZipCodeFormatException) {
 return ZIPCODE_INVALID;
 }
 else {
 return ZIPCODE_UNKNOWN_ERROR;
 }
 }
 return z;
}

a=verifyZipCode(95060); // returns 95060
b=verifyZipCode(9560;) // returns -1
c=verifyZipCode("a"); // returns -1
d=verifyZipCode("95060"); // returns 95060
e=verifyZipCode("95060 1234"); // returns 95060 1234

Example 3: Rethrow an exception. You can use throw to rethrow an exception after
you catch it. The following example catches an exception with a numeric value and
rethrows it if the value is over 50. The rethrown exception propagates up to the
enclosing function or to the top level so that the user sees it.

try {
 throw n // throws an exception with a numeric value
}

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (26 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

catch (e) {
 if (e <= 50) {
 // statements to handle exceptions 1-50
 }
 else {
 // cannot handle this exception, so rethrow
 throw e
 }
}

See also
try...catch

try...catch

Marks a block of statements to try, and specifies a response should an exception be
thrown.

Implemented in JavaScript 1.4

JavaScript 1.5, NES 6.0: added multiple catch clauses
(Netscape extension).

ECMA version ECMA-262, Edition 3

Syntax
try {
 statements
}
[catch (exception_var if expression)
 {statements}] . . .
[catch (exception_var) {statements}]
[finally {statements}]

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (27 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

Parameters

statements

Block of statements that executes once. The statements can
be declarative statements (such as var) or executable
statements (such as for).

catch

A block of statements to be executed if an exception is
thrown in the try block.

exception_var

An identifier to hold an exception object.

expression

A test expression.

finally

A block of statements that is executed before the try...catch
statement completes. This block of statements executes
whether or not an exception was thrown or caught.

Description
The try...catch statement consists of a try block, which contains one or more statements,
and one or more catch blocks, containing statements that specify what to do if an
exception is thrown in the try block. That is, you want the try block to succeed, and if it
does not succeed, you want control to pass to the catch block. If any statement within
the try block (or in a function called from within the try block) throws an exception,
control immediately shifts to the catch block. If no exception is thrown in the try block
succeed, the catch block is skipped. The finally block executes after the try and catch
blocks execute but before the statements following the try...catch statement.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (28 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

You can nest one or more try...catch statements. If an inner try...catch statement does
not have a catch block, the enclosing try...catch statement's catch block is entered.

You also use the try...catch statement to handle Java exceptions. See the Core
JavaScript Guide for information on Java exceptions.

Unconditional catch Block. When a single, unconditional catch block is used, the catch
block entered when any exception is thrown. For example, the following code throws an
exception. When the exception occurs, control transfers to the catch block.

try {
 throw "myException" // generates an exception
}
catch (e) {
 // statements to handle any exceptions
 logMyErrors(e) // pass exception object to error handler
}

Conditional catch Blocks. You can also use one or more conditional catch blocks to
handle specific exceptions. In this case, the appropriate catch block is entered when the
specified exception is thrown. In the following example, code in the try block can
potentially throw three exceptions: TypeError, RangeError, and EvalError. When an
exception occurs, control transfers to the appropriate catch block. If the exception is not
one of the specified exceptions, control transfers to the unconditional catch block at the
end. If you use an unconditional catch block with one or more conditional catch blocks,
the unconditional catch block must be specified last.

try {
 myroutine(); // may throw three exceptions
}
catch (e if e instanceof TypeError) {
 // statements to handle TypeError exceptions
}

catch (e if e instanceof RangeError) {
 // statements to handle RangeError exceptions
}

catch (e if e instanceof EvalError) {
 // statements to handle EvalError exceptions
}

catch (e){

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (29 of 35) [9/16/2004 9:55:18 AM]

file:///devedge-srce/library/manuals/2000/javascript/1.5/guide/
file:///devedge-srce/library/manuals/2000/javascript/1.5/guide/

Core JavaScript Reference 1.5: 3 Statements

 // statements to handle any unspecified exceptions
 logMyErrors(e) // pass exception object to error handler
}

The exception Identifier. When an exception is thrown in the try block, the
exception_var holds the value specified by the throw statement; you can use this
identifier to get information about the exception that was thrown. JavaScript creates this
identifier when the catch block is entered; the identifier lasts only for the duration of the
catch block; after the catch block finishes executing, the identifier is no longer
available.

The finally Block. The finally block contains statements to execute after the try and
catch blocks execute but before the statements following the try...catch statement. The
finally block executes whether or not an exception is thrown. If an exception is thrown,
the statements in the finally block execute even if no catch block handles the exception.

You can use the finally block to make your script fail gracefully when an exception
occurs; for example, you may need to release a resource that your script has tied up. The
following example opens a file and then executes statements that use the file (server-
side JavaScript allows you to access files). If an exception is thrown while the file is
open, the finally block closes the file before the script fails.

openMyFile()
try {
 // tie up a resource
 writeMyFile(theData)
}
finally {
 closeMyFile() // always close the resource
}

Examples
See the examples for throw.

See also
throw

var

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (30 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

Declares a variable, optionally initializing it to a value.

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
var varname [= value] [..., varname [= value]]

Parameters

varname

Variable name. It can be any legal identifier.

value

Initial value of the variable and can be any legal expression.

Description
The scope of a variable is the current function or, for variables declared outside a
function, the current application.

Using var outside a function is optional but recommended; you can declare a variable
by simply assigning it a value. However, it is good style to use var, and it is necessary in
functions in the following situations:

●

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (31 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

● If a global variable of the same name exists.

● If recursive or multiple functions use variables with the same name.

Examples
var num_hits = 0, cust_no = 0

while

Creates a loop that evaluates an expression, and if it is true, executes a block of
statements. The loop then repeats, as long as the specified condition is true.

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
while (condition) {
 statements
}

Parameters

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (32 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

condition

Evaluated before each pass through the loop. If this condition
evaluates to true, the statements in the succeeding block are
performed. When condition evaluates to false, execution
continues with the statement following statements.

statements

Block of statements that are executed as long as the condition
evaluates to true. Although not required, it is good practice to
indent these statements from the beginning of the statement.

Examples
The following while loop iterates as long as n is less than three.

n = 0;
x = 0;
while(n < 3) {
 n ++;
 x += n;
}

Each iteration, the loop increments n and adds it to x. Therefore, x and n take on the
following values:

●

● After the first pass: n = 1 and x = 1

● After the second pass: n = 2 and x = 3

● After the third pass: n = 3 and x = 6

After completing the third pass, the condition n < 3 is no longer true, so the loop
terminates.

with

Establishes the default object for a set of statements.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (33 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
with (object){
 statements
}

Parameters

object

Specifies the default object to use for the statements. The
parentheses around object are required.

statements

Any block of statements.

Description
JavaScript looks up any unqualified names within the set of statements to determine if
the names are properties of the default object. If an unqualified name matches a
property, then the property is used in the statement; otherwise, a local or global variable
is used.

Note that using a with statement will significantly slow down your code. Do not use it
when performance is critical.

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (34 of 35) [9/16/2004 9:55:18 AM]

Core JavaScript Reference 1.5: 3 Statements

Examples
The following with statement specifies that the Math object is the default object. The
statements following the with statement refer to the PI property and the cos and sin
methods, without specifying an object. JavaScript assumes the Math object for these
references.

var a, x, y
var r=10
with (Math) {
 a = PI * r * r
 x = r * cos(PI)
 y = r * sin(PI/2)
}

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My...bat/JavaScript/Netscape/JS15/Refrence/stmt.html (35 of 35) [9/16/2004 9:55:18 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5: 4 Comments

Previous Contents Index Next

Core JavaScript Reference 1.5

Chapter 4 Chapter 4 Comments

This chapter describes the syntax for comments, which can appear anywhere between
tokens.

comment

Notations by the author to explain what a script does. Comments are ignored by the
interpreter.

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax
// comment text
/* multiple line comment text */

Description
JavaScript supports Java-style comments:

●

● Comments on a single line are preceded by a double-slash (//).

● Comments that span multiple lines are preceded by a /* and followed by a */.

Examples
// This is a single-line comment.

file:///C|/Documents%20and%20Settings/george/My%...t/JavaScript/Netscape/JS15/Refrence/comment.html (1 of 2) [9/16/2004 9:55:19 AM]

Core JavaScript Reference 1.5: 4 Comments

/* This is a multiple-line comment. It can be of any length, and
you can put whatever you want here. */

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%...t/JavaScript/Netscape/JS15/Refrence/comment.html (2 of 2) [9/16/2004 9:55:19 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5: 5 Operators

Previous Contents Index Next

Core JavaScript Reference 1.5

Chapter 5 Chapter 5 Operators

JavaScript has assignment, comparison, arithmetic, bitwise, logical, string, and special
operators. This chapter describes the operators and contains information about operator
precedence.

The following table summarizes the JavaScript operators.

Table 5.1 JavaScript operators.

Operator category Operator Description

Arithmetic Operators +

(Addition) Adds 2 numbers.

++

(Increment) Adds one to a variable representing a
number (returning either the new or old value of the
variable).

-

(Unary negation, subtraction) As a unary operator,
negates the value of its argument. As a binary
operator, subtracts 2 numbers.

--

(Decrement) Subtracts one from a variable
representing a number (returning either the new or
old value of the variable).

*

(Multiplication) Multiplies 2 numbers.

file:///C|/Documents%20and%20Settings/george/My%...robat/JavaScript/Netscape/JS15/Refrence/ops.html (1 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

/

(Division) Divides 2 numbers.

%

(Modulus) Computes the integer remainder of
dividing 2 numbers.

String Operators + (String addition) Concatenates 2 strings.

+= Concatenates 2 strings and assigns the result to the
first operand.

Logical Operators && (Logical AND) Returns the first operand if it can be
converted to false; otherwise, returns the second
operand. Thus, when used with Boolean values, &&
returns true if both operands are true; otherwise,
returns false.

|| (Logical OR) Returns the first operand if it can be
converted to true; otherwise, returns the second
operand. Thus, when used with Boolean values, ||
returns true if either operand is true; if both are false,
returns false.

! (Logical NOT) Returns false if its single operand
can be converted to true; otherwise, returns true.

Bitwise Operators &

(Bitwise AND) Returns a one in each bit position if
bits of both operands are ones.

^

(Bitwise XOR) Returns a one in a bit position if bits
of one but not both operands are one.

|

(Bitwise OR) Returns a one in a bit if bits of either
operand is one.

file:///C|/Documents%20and%20Settings/george/My%...robat/JavaScript/Netscape/JS15/Refrence/ops.html (2 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

~

(Bitwise NOT) Flips the bits of its operand.

<<

(Left shift) Shifts its first operand in binary
representation the number of bits to the left specified
in the second operand, shifting in zeros from the
right.

>>

(Sign-propagating right shift) Shifts the first operand
in binary representation the number of bits to the
right specified in the second operand, discarding bits
shifted off.

>>>

(Zero-fill right shift) Shifts the first operand in
binary representation the number of bits to the right
specified in the second operand, discarding bits
shifted off, and shifting in zeros from the left.

Assignment Operators =

Assigns the value of the second operand to the first
operand.

+=

Adds 2 numbers and assigns the result to the first.

-=

Subtracts 2 numbers and assigns the result to the
first.

*=

Multiplies 2 numbers and assigns the result to the
first.

/=

Divides 2 numbers and assigns the result to the first.

file:///C|/Documents%20and%20Settings/george/My%...robat/JavaScript/Netscape/JS15/Refrence/ops.html (3 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

%=

Computes the modulus of 2 numbers and assigns the
result to the first.

&=

Performs a bitwise AND and assigns the result to the
first operand.

^=

Performs a bitwise XOR and assigns the result to the
first operand.

|=

Performs a bitwise OR and assigns the result to the
first operand.

<<=

Performs a left shift and assigns the result to the first
operand.

>>=

Performs a sign-propagating right shift and assigns
the result to the first operand.

>>>=

Performs a zero-fill right shift and assigns the result
to the first operand.

Comparison Operators == Returns true if the operands are equal.

!= Returns true if the operands are not equal.

=== Returns true if the operands are equal and of the
same type.

!== Returns true if the operands are not equal and/or not
of the same type.

file:///C|/Documents%20and%20Settings/george/My%...robat/JavaScript/Netscape/JS15/Refrence/ops.html (4 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

> Returns true if the left operand is greater than the
right operand.

>= Returns true if the left operand is greater than or
equal to the right operand.

< Returns true if the left operand is less than the right
operand.

<= Returns true if the left operand is less than or equal
to the right operand.

Special Operators ?:

Performs a simple "if...then...else".

,

Evaluates two expressions and returns the result of
the second expression.

delete

Deletes an object, an object's property, or an element
at a specified index in an array.

function

Defines an anonymous function.

in

Returns true if the specified property is in the
specified object.

instanceof

Returns true if the specified object is of the specified
object type.

file:///C|/Documents%20and%20Settings/george/My%...robat/JavaScript/Netscape/JS15/Refrence/ops.html (5 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

new

Creates an instance of a user-defined object type or
of one of the built-in object types.

this

Keyword that you can use to refer to the current
object.

typeof

Returns a string indicating the type of the
unevaluated operand.

void

Specifies an expression to be evaluated without
returning a value.

Assignment Operators

An assignment operator assigns a value to its left operand based on the value of its right
operand.

Implemented in JavaScript 1.0

ECMA version ECMA-262

The basic assignment operator is equal (=), which assigns the value of its right operand
to its left operand. That is, x = y assigns the value of y to x. The other assignment
operators are usually shorthand for standard operations, as shown in the following table.

Table 5.2 Assignment operators

file:///C|/Documents%20and%20Settings/george/My%...robat/JavaScript/Netscape/JS15/Refrence/ops.html (6 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

Shorthand operator Meaning

x += y

x = x + y

x -= y

x = x - y

x *= y

x = x * y

x /= y

x = x / y

x %= y

x = x % y

x <<= y

x = x << y

x >>= y

x = x >> y

x >>>= y

x = x >>> y

x &= y

x = x & y

file:///C|/Documents%20and%20Settings/george/My%...robat/JavaScript/Netscape/JS15/Refrence/ops.html (7 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

x ^= y

x = x ^ y

x |= y

x = x | y

In unusual situations, the assignment operator is not identical to the Meaning expression
in Table 5.2. When the left operand of an assignment operator itself contains an
assignment operator, the left operand is evaluated only once. For example:

a[i++] += 5 //i is evaluated only once
a[i++] = a[i++] + 5 //i is evaluated twice

Comparison Operators

A comparison operator compares its operands and returns a logical value based on
whether the comparison is true.

Implemented in JavaScript 1.0

JavaScript 1.3: Added the === and !== operators.

JavaScript 1.4: Deprecated == for comparison of two
JSObject objects. Use the JSObject.equals method.

ECMA version ECMA-262 includes all comparison operators except ===
and !==.
ECMA-262 Edition 3 adds === and !==.

The operands can be numerical or string values. Strings are compared based on standard
lexicographical ordering, using Unicode values.

A Boolean value is returned as the result of the comparison.

file:///C|/Documents%20and%20Settings/george/My%...robat/JavaScript/Netscape/JS15/Refrence/ops.html (8 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

●

● Two strings are equal when they have the same sequence of characters, same
length, and same characters in corresponding positions.

● Two numbers are equal when they are numerically equal (have the same number
value). NaN is not equal to anything, including NaN. Positive and negative zeros
are equal.

● Two objects are equal if they refer to the same Object.

● Two Boolean operands are equal if they are both true or false.

● Null and Undefined types are == (but not ===).

The following table describes the comparison operators.

Table 5.3 Comparison operators

Operator Description Examples returning
true1

Equal (==) Returns true if the operands are
equal. If the two operands are
not of the same type, JavaScript
attempts to convert the
operands to an appropriate type
for the comparison.

3 == var1
"3" == var1
3 == '3'

Not equal (!=) Returns true if the operands are
not equal. If the two operands
are not of the same type,
JavaScript attempts to convert
the operands to an appropriate
type for the comparison.

var1 != 4
var1 != "3"

Strict equal (===) Returns true if the operands are
equal and of the same type.

3 === var1

file:///C|/Documents%20and%20Settings/george/My%...robat/JavaScript/Netscape/JS15/Refrence/ops.html (9 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

Strict not equal (!==) Returns true if the operands are
not equal and/or not of the same
type.

var1 !== "3"
3 !== '3'

Greater than (>) Returns true if the left operand
is greater than the right
operand.

var2 > var1

Greater than or equal (>=)

Returns true if the left operand
is greater than or equal to the
right operand.

var2 >= var1
var1 >= 3

Less than (<) Returns true if the left operand
is less than the right operand.

var1 < var2

Less than or equal (<=) Returns true if the left operand
is less than or equal to the right
operand.

var1 <= var2
var2 <= 5

1 These examples assume that var1 has been assigned the value 3 and var2 has been
assigned the value 4.

Using the Equality Operators

The standard equality operators (== and !=) compare two operands without regard to
their type. The strict equality operators (=== and !==) perform equality comparisons on
operands of the same type. Use strict equality operators if the operands must be of a
specific type as well as value or if the exact type of the operands is important.
Otherwise, use the standard equality operators, which allow you to compare the identity
of two operands even if they are not of the same type.

When type conversion is needed, JavaScript converts String, Number, Boolean, or
Object operands as follows.

●

● When comparing a number and a string, the string is converted to a number
value. JavaScript attempts to convert the string numeric literal to a Number type

file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (10 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

value. First, a mathematical value is derived from the string numeric literal.
Next, this value is rounded to nearest Number type value.

● If one of the operands is Boolean, the Boolean operand is converted to 1 if it is
true and +0 if it is false.

● If an object is compared with a number or string, JavaScript attempts to return
the default value for the object. Operators attempt to convert the object to a
primitive value, a String or Number value, using the valueOf and toString
methods of the objects. If this attempt to convert the object fails, a runtime error
is generated.

You cannot use the standard equality operator (==) to compare instances of JSObject.
Use the JSObject.equals method for such comparisons.

Backward Compatibility
The behavior of the standard equality operators (== and !=) depends on the JavaScript
version.

JavaScript 1.3 and earlier versions. You can use either the standard equality operator
(==) or JSObject.equals to compare instances of JSObject.

JavaScript 1.2. The standard equality operators (== and !=) do not perform a type
conversion before the comparison is made. The strict equality operators (=== and !==)
are unavailable.

JavaScript 1.1 and earlier versions. The standard equality operators (== and !=)
perform a type conversion before the comparison is made. The strict equality operators
(=== and !==) are unavailable.

Arithmetic Operators

Arithmetic operators take numerical values (either literals or variables) as their operands
and return a single numerical value. The standard arithmetic operators are addition (+),
subtraction (-), multiplication (*), and division (/).

Implemented in JavaScript 1.0

file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (11 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

ECMA version ECMA-262

These operators work as they do in most other programming languages, except the /
operator returns a floating-point division in JavaScript, not a truncated division as it
does in languages such as C or Java. For example:

1/2 //returns 0.5 in JavaScript
1/2 //returns 0 in Java

% (Modulus)

The modulus operator is used as follows:

var1 % var2

The modulus operator returns the first operand modulo the second operand, that is, var1
modulo var2, in the preceding statement, where var1 and var2 are variables. The
modulo function is the integer remainder of dividing var1 by var2. For example, 12 % 5
returns 2.

++ (Increment)

The increment operator is used as follows:

var ++ or ++var

This operator increments (adds one to) its operand and returns a value. If used postfix,
with operator after operand (for example, x++), then it returns the value before
incrementing. If used prefix with operator before operand (for example, ++x), then it
returns the value after incrementing.

For example, if x is three, then the statement y = x++ sets y to 3 and increments x to 4.
If x is 3, then the statement y = ++x increments x to 4 and sets y to 4.

-- (Decrement)

The decrement operator is used as follows:

var -- or --var

file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (12 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

This operator decrements (subtracts one from) its operand and returns a value. If used
postfix (for example, x--), then it returns the value before decrementing. If used prefix
(for example, --x), then it returns the value after decrementing.

For example, if x is three, then the statement y = x-- sets y to 3 and decrements x to 2. If
x is 3, then the statement y = --x decrements x to 2 and sets y to 2.

- (Unary Negation)

The unary negation operator precedes its operand and negates it. For example, y = -x
negates the value of x and assigns that to y; that is, if x were 3, y would get the value -3
and x would retain the value 3.

Bitwise Operators

Bitwise operators treat their operands as a set of 32 bits (zeros and ones), rather than as
decimal, hexadecimal, or octal numbers. For example, the decimal number nine has a
binary representation of 1001. Bitwise operators perform their operations on such
binary representations, but they return standard JavaScript numerical values.

The following table summarizes JavaScript's bitwise operators:

Table 5.4 Bitwise operators

Operator Usage Description

Bitwise AND a & b

Returns a one in each bit position for which the
corresponding bits of both operands are ones.

Bitwise OR a | b

Returns a one in each bit position for which the
corresponding bits of either or both operands are
ones.

file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (13 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

Bitwise XOR a ^ b

Returns a one in each bit position for which the
corresponding bits of either but not both
operands are ones.

Bitwise NOT ~ a

Inverts the bits of its operand.

Left shift a << b

Shifts a in binary representation b bits to left,
shifting in zeros from the right.

Sign-propagating right shift a >> b

Shifts a in binary representation b bits to right,
discarding bits shifted off.

Zero-fill right shift a >>> b

Shifts a in binary representation b bits to the
right, discarding bits shifted off, and shifting in
zeros from the left.

Implemented in JavaScript 1.0

ECMA version ECMA-262

"> Bitwise Logical Operators

Implemented in JavaScript 1.0

ECMA version ECMA-262

file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (14 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

Conceptually, the bitwise logical operators work as follows:

●

● The operands are converted to thirty-two-bit integers and expressed by a series
of bits (zeros and ones).

● Each bit in the first operand is paired with the corresponding bit in the second
operand: first bit to first bit, second bit to second bit, and so on.

● The operator is applied to each pair of bits, and the result is constructed bitwise.

For example, the binary representation of nine is 1001, and the binary representation of
fifteen is 1111. So, when the bitwise operators are applied to these values, the results
are as follows:

●

● 15 & 9 yields 9 (1111 & 1001 = 1001)

● 15 | 9 yields 15 (1111 | 1001 = 1111)

● 15 ^ 9 yields 6 (1111 ^ 1001 = 0110)

Implemented in JavaScript 1.0

ECMA version ECMA-262

"> Bitwise Shift Operators

Implemented in JavaScript 1.0

file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (15 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

ECMA version ECMA-262

The bitwise shift operators take two operands: the first is a quantity to be shifted, and
the second specifies the number of bit positions by which the first operand is to be
shifted. The direction of the shift operation is controlled by the operator used.

Shift operators convert their operands to thirty-two-bit integers and return a result of the
same type as the left operator.

<< (Left Shift)

This operator shifts the first operand the specified number of bits to the left. Excess bits
shifted off to the left are discarded. Zero bits are shifted in from the right.

For example, 9<<2 yields thirty-six, because 1001 shifted two bits to the left becomes
100100, which is thirty-six.

>> (Sign-Propagating Right Shift)

This operator shifts the first operand the specified number of bits to the right. Excess
bits shifted off to the right are discarded. Copies of the leftmost bit are shifted in from
the left.

For example, 9>>2 yields two, because 1001 shifted two bits to the right becomes 10,
which is two. Likewise, -9>>2 yields -3, because the sign is preserved.

>>> (Zero-Fill Right Shift)

This operator shifts the first operand the specified number of bits to the right. Excess
bits shifted off to the right are discarded. Zero bits are shifted in from the left.

For example, 19>>>2 yields four, because 10011 shifted two bits to the right becomes
100, which is four. For non-negative numbers, zero-fill right shift and sign-propagating
right shift yield the same result.

file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (16 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

Logical Operators

Logical operators are typically used with Boolean (logical) values; when they are, they
return a Boolean value. However, the && and || operators actually return the value of
one of the specified operands, so if these operators are used with non-Boolean values,
they may return a non-Boolean value.

Implemented in JavaScript 1.0

ECMA version ECMA-262

The logical operators are described in the following table.

Table 5.5 Logical operators

Operator Usage Description

&& expr1 && expr2

(Logical AND) Returns expr1 if it can be converted to
false; otherwise, returns expr2. Thus, when used with
Boolean values, && returns true if both operands are true;
otherwise, returns false.

|| expr1 || expr2

(Logical OR) Returns expr1 if it can be converted to true;
otherwise, returns expr2. Thus, when used with Boolean
values, || returns true if either operand is true; if both are
false, returns false.

! !expr

(Logical NOT) Returns false if its single operand can be
converted to true; otherwise, returns true.

file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (17 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

Examples of expressions that can be converted to false are those that evaluate to null, 0,
the empty string (""), or undefined.

Even though the && and || operators can be used with operands that are not Boolean
values, they can still be considered Boolean operators since their return values can
always be converted to Boolean values.

Short-Circuit Evaluation. As logical expressions are evaluated left to right, they are
tested for possible "short-circuit" evaluation using the following rules:

●

● false && anything is short-circuit evaluated to false.

● true || anything is short-circuit evaluated to true.

The rules of logic guarantee that these evaluations are always correct. Note that the
anything part of the above expressions is not evaluated, so any side effects of doing so
do not take effect.

Backward Compatibility

JavaScript 1.0 and 1.1. The && and || operators behave as follows:

Operator Behavior

&& If the first operand (expr1) can be converted to false, the &&
operator returns false rather than the value of expr1.

|| If the first operand (expr1) can be converted to true, the ||
operator returns true rather than the value of expr1.

Examples
The following code shows examples of the && (logical AND) operator.

file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (18 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

a1=true && true // t && t returns true
a2=true && false // t && f returns false
a3=false && true // f && t returns false
a4=false && (3 == 4) // f && f returns false
a5="Cat" && "Dog" // t && t returns Dog
a6=false && "Cat" // f && t returns false
a7="Cat" && false // t && f returns false

The following code shows examples of the || (logical OR) operator.

o1=true || true // t || t returns true
o2=false || true // f || t returns true
o3=true || false // t || f returns true
o4=false || (3 == 4) // f || f returns false
o5="Cat" || "Dog" // t || t returns Cat
o6=false || "Cat" // f || t returns Cat
o7="Cat" || false // t || f returns Cat

The following code shows examples of the ! (logical NOT) operator.

n1=!true // !t returns false
n2=!false // !f returns true
n3=!"Cat" // !t returns false

String Operators

In addition to the comparison operators, which can be used on string values, the
concatenation operator (+) concatenates two string values together, returning another
string that is the union of the two operand strings. For example, "my " + "string" returns
the string "my string".

Implemented in JavaScript 1.0

ECMA version ECMA-262

file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (19 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

The shorthand assignment operator += can also be used to concatenate strings. For
example, if the variable mystring has the value "alpha," then the expression
mystring += "bet" evaluates to "alphabet" and assigns this value to mystring.

Special Operators

?: (Conditional operator)

The conditional operator is the only JavaScript operator that takes three operands. This
operator is frequently used as a shortcut for the if statement.

Implemented in JavaScript 1.0

ECMA version ECMA-262

Syntax
condition ? expr1 : expr2

Parameters

condition

An expression that evaluates to true or false.

file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (20 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

expr1, expr2

Expressions with values of any type.

Description
If condition is true, the operator returns the value of expr1; otherwise, it returns the
value of expr2. For example, to display a different message based on the value of the
isMember variable, you could use this statement:

document.write ("The fee is " + (isMember ? "$2.00" : "$10.00"))

, (Comma operator)

The comma operator evaluates both of its operands and returns the value of the second
operand.

Implemented in JavaScript 1.0

ECMA version ECMA-262

Syntax
expr1, expr2

Parameters

file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (21 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

expr1, expr2

Any expressions.

Description
You can use the comma operator when you want to include multiple expressions in a
location that requires a single expression. The most common usage of this operator is to
supply multiple parameters in a for loop.

For example, if a is a 2-dimensional array with 10 elements on a side, the following
code uses the comma operator to increment two variables at once. The code prints the
values of the diagonal elements in the array:

for (var i=0, j=9; i <= 9; i++, j--)
 document.writeln("a["+i+","+j+"]= " + a[i,j])

delete

The delete operator deletes an object, an object's property, or an element at a specified
index in an array.

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA-262

Syntax
delete objectName
delete objectName.property
delete objectName[index]
delete property // legal only within a with statement

Parameters

file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (22 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

objectName

The name of an object.

property

The property to delete.

index

An integer representing the array index to delete.

Description
The fourth form is legal only within a with statement, to delete a property from an
object.

You can use the delete operator to delete variables declared implicitly but not those
declared with the var statement.

If the delete operator succeeds, it sets the property or element to undefined. The delete
operator returns true if the operation is possible; it returns false if the operation is not
possible.

x=42
var y= 43
myobj=new Number()
myobj.h=4 // create property h
delete x // returns true (can delete if declared implicitly)
delete y // returns false (cannot delete if declared with var)
delete Math.PI // returns false (cannot delete predefined properties)
delete myobj.h // returns true (can delete user-defined properties)
delete myobj // returns true (can delete objects)

Deleting array elements. When you delete an array element, the array length is not
affected. For example, if you delete a[3], a[4] is still a[4] and a[3] is undefined.

file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (23 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

When the delete operator removes an array element, that element is no longer in the
array. In the following example, trees[3] is removed with delete.

trees=new Array("redwood","bay","cedar","oak","maple")
delete trees[3]
if (3 in trees) {
 // this does not get executed
}

If you want an array element to exist but have an undefined value, use the undefined
keyword instead of the delete operator. In the following example, trees[3] is assigned
the value undefined, but the array element still exists:

trees=new Array("redwood","bay","cedar","oak","maple")
trees[3]=undefined
if (3 in trees) {
 // this gets executed
}

function

The function operator defines an anonymous function inside an expression.

Implemented in JavaScript 1.5

Syntax
{var | const} variableName = function(parameters) {functionBody};

Description
The following examples shows how the function operator is used.

This example declares an unnamed function inside an expression. It sets x to a function
that returns the square of its argument:

var x = function(y) {return y*y};

file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (24 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

The next example declares array a as an array of three functions:

var a = [function(y) {return y}, function y {return y*y}, function (y) [return y*y*y}];

For this array, a[0](5) returns 5, a[1](5) returns 25, and a[2](5) returns 125.

in

The in operator returns true if the specified property is in the specified object.

Implemented in JavaScript 1.4

Syntax
propNameOrNumber in objectName

Parameters

propNameOrNumber

A string or numeric expression representing a
property name or array index.

objectName

Name of an object.

Description
The following examples show some uses of the in operator.

// Arrays
file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (25 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

trees=new Array("redwood","bay","cedar","oak","maple")
0 in trees // returns true
3 in trees // returns true
6 in trees // returns false
"bay" in trees // returns false (you must specify the index number,
 // not the value at that index)
"length" in trees // returns true (length is an Array property)

// Predefined objects
"PI" in Math // returns true
myString=new String("coral")
"length" in myString // returns true

// Custom objects
mycar = {make:"Honda",model:"Accord",year:1998}
"make" in mycar // returns true
"model" in mycar // returns true

You must specify an object on the right side of the in operator. For example, you can
specify a string created with the String constructor, but you cannot specify a string
literal.

color1=new String("green")
"length" in color1 // returns true
color2="coral"
"length" in color2 // generates an error (color is not a String object)

Using in with deleted or undefined properties. If you delete a property with the delete
operator, the in operator returns false for that property.

mycar = {make:"Honda",model:"Accord",year:1998}
delete mycar.make
"make" in mycar // returns false

trees=new Array("redwood","bay","cedar","oak","maple")
delete trees[3]
3 in trees // returns false

If you set a property to undefined but do not delete it, the in operator returns true for
that property.

mycar = {make:"Honda",model:"Accord",year:1998}
mycar.make=undefined

file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (26 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

"make" in mycar // returns true

trees=new Array("redwood","bay","cedar","oak","maple")
trees[3]=undefined
3 in trees // returns true

For additional information about using the in operator with deleted array elements, see
delete.

instanceof

The instanceof operator returns true if the specified object is of the specified object
type.

Implemented in JavaScript 1.4

Syntax
objectName instanceof objectType

Parameters

objectName

Name of the object to compare to objectType.

objectType

Object type.

file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (27 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

Description
Use instanceof when you need to confirm the type of an object at runtime. For example,
when catching exceptions, you can branch to different exception-handling code
depending on the type of exception thrown.

You must specify an object on the right side of the instanceof operator. For example,
you can specify a string created with the String constructor, but you cannot specify a
string literal.

color1=new String("green")
color1 instanceof String // returns true
color2="coral"
color2 instanceof String // returns false (color is not a String object)

Examples
See also the examples for throw.

Example 1. The following code uses instanceof to determine whether theDay is a Date
object. Because theDay is a Date object, the statements in the if statement execute.

theDay=new Date(1995, 12, 17)
if (theDay instanceof Date) {
 // statements to execute
}

Example 2. The following code uses instanceof to demonstrate that String and Date
objects are also of type Object (they are derived from Object).

myString=new String()
myDate=new Date()

myString instanceof String // returns true
myString instanceof Object // returns true
myString instanceof Date // returns false

myDate instanceof Date // returns true
myDate instanceof Object // returns true
myDate instanceof String // returns false

Example 3. The following code creates an object type Car and an instance of that object
type, mycar. The instanceof operator demonstrates that the mycar object is of type Car
and of type Object.

file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (28 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

function Car(make, model, year) {
 this.make = make
 this.model = model
 this.year = year
}
mycar = new Car("Honda", "Accord", 1998)
a=mycar instanceof Car // returns true
b=mycar instanceof Object // returns true

new

The new operator creates an instance of a user-defined object type or of one of the built-
in object types that has a constructor function.

Implemented in JavaScript 1.0

ECMA version ECMA-262

Syntax
objectName = new objectType (param1 [,param2] ...[,paramN])

Parameters

objectName

Name of the new object instance.

file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (29 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

objectType

Object type. It must be a function that defines an object
type.

param1...paramN

Property values for the object. These properties are
parameters defined for the objectType function.

Description
Creating a user-defined object type requires two steps:

1.
1. Define the object type by writing a function.

2. Create an instance of the object with new.

To define an object type, create a function for the object type that specifies its name,
properties, and methods. An object can have a property that is itself another object. See
the examples below.

You can always add a property to a previously defined object. For example, the
statement car1.color = "black" adds a property color to car1, and assigns it a value of
"black". However, this does not affect any other objects. To add the new property to all
objects of the same type, you must add the property to the definition of the car object
type.

You can add a property to a previously defined object type by using the
Function.prototype property. This defines a property that is shared by all objects created
with that function, rather than by just one instance of the object type. The following
code adds a color property to all objects of type car, and then assigns a value to the
color property of the object car1. For more information, see prototype

Car.prototype.color=null
car1.color="black"
birthday.description="The day you were born"

Examples
Example 1: Object type and object instance. Suppose you want to create an object
type for cars. You want this type of object to be called car, and you want it to have

file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (30 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

properties for make, model, and year. To do this, you would write the following
function:

function car(make, model, year) {
 this.make = make
 this.model = model
 this.year = year
}

Now you can create an object called mycar as follows:

mycar = new car("Eagle", "Talon TSi", 1993)

This statement creates mycar and assigns it the specified values for its properties. Then
the value of mycar.make is the string "Eagle", mycar.year is the integer 1993, and so on.

You can create any number of car objects by calls to new. For example,

kenscar = new car("Nissan", "300ZX", 1992)

Example 2: Object property that is itself another object. Suppose you define an
object called person as follows:

function person(name, age, sex) {
 this.name = name
 this.age = age
 this.sex = sex
}

And then instantiate two new person objects as follows:

rand = new person("Rand McNally", 33, "M")
ken = new person("Ken Jones", 39, "M")

Then you can rewrite the definition of car to include an owner property that takes a
person object, as follows:

function car(make, model, year, owner) {
 this.make = make;
 this.model = model;
 this.year = year;
 this.owner = owner;
}

file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (31 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

To instantiate the new objects, you then use the following:

car1 = new car("Eagle", "Talon TSi", 1993, rand);
car2 = new car("Nissan", "300ZX", 1992, ken)

Instead of passing a literal string or integer value when creating the new objects, the
above statements pass the objects rand and ken as the parameters for the owners. To
find out the name of the owner of car2, you can access the following property:

car2.owner.name

this

The this keyword refers to the current object. In general, in a method this refers to the
calling object.

Implemented in JavaScript 1.0

ECMA version ECMA-262

Syntax
this[.propertyName]

Examples
Suppose a function called validate validates an object's value property, given the object
and the high and low values:

function validate(obj, lowval, hival) {
 if ((obj.value < lowval) || (obj.value > hival))
 alert("Invalid Value!")
}

You could call validate in each form element's onChange event handler, using this to
pass it the form element, as in the following example:

file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (32 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

Enter a number between 18 and 99:
<INPUT TYPE = "text" NAME = "age" SIZE = 3
 onChange="validate(this, 18, 99)">

typeof

The typeof operator is used in either of the following ways:

1. typeof operand
2. typeof (operand)

The typeof operator returns a string indicating the type of the unevaluated operand.
operand is the string, variable, keyword, or object for which the type is to be returned.
The parentheses are optional.

Implemented in JavaScript 1.1

ECMA version ECMA-262

Suppose you define the following variables:

var myFun = new Function("5+2")
var shape="round"
var size=1
var today=new Date()

The typeof operator returns the following results for these variables:

typeof myFun is object
typeof shape is string
typeof size is number
typeof today is object
typeof dontExist is undefined

For the keywords true and null, the typeof operator returns the following results:

typeof true is boolean

file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (33 of 35) [9/16/2004 9:55:23 AM]

Core JavaScript Reference 1.5: 5 Operators

typeof null is object

For a number or string, the typeof operator returns the following results:

typeof 62 is number
typeof 'Hello world' is string

For property values, the typeof operator returns the type of value the property contains:

typeof document.lastModified is string
typeof window.length is number
typeof Math.LN2 is number

For methods and functions, the typeof operator returns results as follows:

typeof blur is function
typeof eval is function
typeof parseInt is function
typeof shape.split is function

For predefined objects, the typeof operator returns results as follows:

typeof Date is function
typeof Function is function
typeof Math is function
typeof Option is function
typeof String is function

void

The void operator is used in either of the following ways:

1. void (expression)
2. void expression

The void operator specifies an expression to be evaluated without returning a value.
expression is a JavaScript expression to evaluate. The parentheses surrounding the
expression are optional, but it is good style to use them.

file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (34 of 35) [9/16/2004 9:55:24 AM]

Core JavaScript Reference 1.5: 5 Operators

Implemented in JavaScript 1.1

ECMA version ECMA-262

You can use the void operator to specify an expression as a hypertext link. The
expression is evaluated but is not loaded in place of the current document.

The following code creates a hypertext link that does nothing when the user clicks it.
When the user clicks the link, void(0) evaluates to 0, but that has no effect in JavaScript.

Click here to do nothing

The following code creates a hypertext link that submits a form when the user clicks it.

Click here to submit

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My...obat/JavaScript/Netscape/JS15/Refrence/ops.html (35 of 35) [9/16/2004 9:55:24 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5:

Previous Contents Index Next

Core JavaScript Reference 1.5

Part 3 LiveConnect Class Reference

Chapter 6 Java Classes, Constructors, and Methods
This chapter documents the Java classes used for LiveConnect, along with their
constructors and methods. It is an alphabetical reference for the classes that allow a Java
object to access JavaScript code.

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%20Do...obat/JavaScript/Netscape/JS15/Refrence/partjava.html [9/16/2004 9:55:27 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5: 6 Java Classes, Constructors, and Methods

Previous Contents Index Next

Core JavaScript Reference 1.5

Chapter 6 Chapter 6 Java Classes, Constructors, and Methods

This chapter documents the Java classes used for LiveConnect, along with their
constructors and methods. It is an alphabetical reference for the classes that allow a Java
object to access JavaScript code.

This reference is organized as follows:

●

● Full entries for each class appear in alphabetical order.
Tables included in the description of each class summarize the constructors and
methods of the class.

● Full entries for the constructors and methods of a class appear in alphabetical
order after the entry for the class.

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%20Do...obat/JavaScript/Netscape/JS15/Refrence/classint.html [9/16/2004 9:55:29 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5:

Previous Contents Index Next

Core JavaScript Reference 1.5

JSException

The public class JSException extends RuntimeException.

java.lang.Object
 |
 +----java.lang.Throwable
 |
 +----java.lang.Exception
 |
 +----java.lang.RuntimeException
 |
 +----netscape.javascript.JSException

Description
JSException is an exception which is thrown when JavaScript code returns an error.

Constructor Summary
The netscape.javascript.JSException class has the following constructors:

Constructor Description

JSException

Deprecated constructors optionally let you specify a detail
message and other information.

file:///C|/Documents%20and%20Settings/george/My%2...at/JavaScript/Netscape/JS15/Refrence/lcjsexc.html (1 of 5) [9/16/2004 9:55:32 AM]

Core JavaScript Reference 1.5:

Method Summary
The netscape.javascript.JSException class has the following methods:

Method Description

getWrappedException

Instance method getWrappedException.

getWrappedExceptionType

Instance method getWrappedExceptionType
returns the int mapping of the type of the
wrappedException object.

The following sections show the declaration and usage of the constructors and method.

Backward Compatibility

JavaScript 1.1 through 1.3. JSException had three public constructors which
optionally took a string argument, specifying the detail message or other information for
the exception. The getWrappedException method was not available.

JSException

Constructors, deprecated in JavaScript 1.4. Constructs a JSException with an optional
detail message.

Declaration
1. public JSException()

2. public JSException(String s)

3. public JSException(String s,
 String filename,
 int lineno,
 String source,

file:///C|/Documents%20and%20Settings/george/My%2...at/JavaScript/Netscape/JS15/Refrence/lcjsexc.html (2 of 5) [9/16/2004 9:55:32 AM]

Core JavaScript Reference 1.5:

 int tokenIndex)

Arguments

s

The detail message.

filename

The URL of the file where the error occurred, if possible.

lineno

The line number if the file, if possible.

source

The string containing the JavaScript code being evaluated.

tokenIndex

The index into the source string where the error occurred.

getWrappedException

Instance method getWrappedException.

Declaration
public Object getWrappedException()

Description
file:///C|/Documents%20and%20Settings/george/My%2...at/JavaScript/Netscape/JS15/Refrence/lcjsexc.html (3 of 5) [9/16/2004 9:55:32 AM]

Core JavaScript Reference 1.5:

getWrappedException() returns an object that represents the value that the JavaScript
actually threw. JavaScript can throw any type of value. Use getWrappedException() to
determine what kind of value the Object return type represents.

getWrappedExceptionType

Instance method getWrappedExceptionType.

Declaration
public int getWrappedExceptionType()

Description
getWrappedExceptionType() returns an int that matches one of the following static ints
declared by the JSException class:

EXCEPTION_TYPE_EMPTY

EXCEPTION_TYPE_VOID

EXCEPTION_TYPE_OBJECT

EXCEPTION_TYPE_FUNCTION

EXCEPTION_TYPE_STRING

EXCEPTION_TYPE_NUMBER

EXCEPTION_TYPE_BOOLEAN

file:///C|/Documents%20and%20Settings/george/My%2...at/JavaScript/Netscape/JS15/Refrence/lcjsexc.html (4 of 5) [9/16/2004 9:55:32 AM]

Core JavaScript Reference 1.5:

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%2...at/JavaScript/Netscape/JS15/Refrence/lcjsexc.html (5 of 5) [9/16/2004 9:55:32 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5:

Previous Contents Index Next

Core JavaScript Reference 1.5

JSObject

The public final class netscape.javascript.JSObject extends Object.

java.lang.Object
 |
 +----netscape.javascript.JSObject

Description
JavaScript objects are wrapped in an instance of the class netscape.javascript.JSObject
and passed to Java. JSObject allows Java to manipulate JavaScript objects.

When a JavaScript object is sent to Java, the runtime engine creates a Java wrapper of
type JSObject; when a JSObject is sent from Java to JavaScript, the runtime engine
unwraps it to its original JavaScript object type. The JSObject class provides a way to
invoke JavaScript methods and examine JavaScript properties.

Any JavaScript data brought into Java is converted to Java data types. When the
JSObject is passed back to JavaScript, the object is unwrapped and can be used by
JavaScript code. See the Core JavaScript Guide for more information about data type
conversions.

Method Summary
The netscape.javascript.JSObject class has the following methods:

Method Description

file:///C|/Documents%20and%20Settings/george/My%2...at/JavaScript/Netscape/JS15/Refrence/lcjsobj.html (1 of 6) [9/16/2004 9:55:36 AM]

file:///devedge-srce/library/manuals/2000/javascript/1.5/guide/

Core JavaScript Reference 1.5:

call

Calls a JavaScript method.

equals

Determines if two JSObject objects refer to the same
instance.

eval

Evaluates a JavaScript expression.

getMember

Retrieves the value of a property of a JavaScript object.

getSlot

Retrieves the value of an array element of a JavaScript
object.

removeMember

Removes a property of a JavaScript object.

setMember

Sets the value of a property of a JavaScript object.

setSlot

Sets the value of an array element of a JavaScript object.

file:///C|/Documents%20and%20Settings/george/My%2...at/JavaScript/Netscape/JS15/Refrence/lcjsobj.html (2 of 6) [9/16/2004 9:55:36 AM]

Core JavaScript Reference 1.5:

toString

Converts a JSObject to a string.

The netscape.javascript.JSObject class has the following static methods:

Method Description

getWindow

Gets a JSObject for the window containing the given applet.

The following sections show the declaration and usage of these methods.

call

Method. Calls a JavaScript method. Equivalent to "this.methodName(args[0], args[1],
...)" in JavaScript.

Declaration
public Object call(String methodName,
 Object args[])

equals

Method. Determines if two JSObject objects refer to the same instance.

Overrides: equals in class java.lang.Object

Declaration
public boolean equals(Object obj)

Backward Compatibility
file:///C|/Documents%20and%20Settings/george/My%2...at/JavaScript/Netscape/JS15/Refrence/lcjsobj.html (3 of 6) [9/16/2004 9:55:36 AM]

Core JavaScript Reference 1.5:

JavaScript 1.3. In JavaScript 1.3 and earlier versions, you can use either the equals
method of java.lang.Object or the == operator to evaluate two JSObject objects.

In more recent versions, the same JSObject can appear as different Java objects. You
can use the equals method to determine whether two JSObjects refer to the same
instance.

eval

Method. Evaluates a JavaScript expression. The expression is a string of JavaScript
source code which will be evaluated in the context given by "this".

Declaration
public Object eval(String s)

getMember

Method. Retrieves the value of a property of a JavaScript object. Equivalent to
"this.name" in JavaScript.

Declaration
public Object getMember(String name)

getSlot

Method. Retrieves the value of an array element of a JavaScript object. Equivalent to
"this[index]" in JavaScript.

Declaration
public Object getSlot(int index)

getWindow

file:///C|/Documents%20and%20Settings/george/My%2...at/JavaScript/Netscape/JS15/Refrence/lcjsobj.html (4 of 6) [9/16/2004 9:55:36 AM]

Core JavaScript Reference 1.5:

Static method. Returns a JSObject for the window containing the given applet. This
method is useful in client-side JavaScript only.

Declaration
public static JSObject getWindow(Applet applet)

removeMember

Method. Removes a property of a JavaScript object.

Declaration
public void removeMember(String name)

setMember

Method. Sets the value of a property of a JavaScript object. Equivalent to
"this.name = value" in JavaScript.

Declaration
public void setMember(String name,
 Object value)

setSlot

Method. Sets the value of an array element of a JavaScript object. Equivalent to
"this[index] = value" in JavaScript.

Declaration
public void setSlot(int index,
 Object value)

toString

file:///C|/Documents%20and%20Settings/george/My%2...at/JavaScript/Netscape/JS15/Refrence/lcjsobj.html (5 of 6) [9/16/2004 9:55:36 AM]

Core JavaScript Reference 1.5:

Method. Converts a JSObject to a String.

Overrides: toString in class java.lang.Object

Declaration
public String toString()

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%2...at/JavaScript/Netscape/JS15/Refrence/lcjsobj.html (6 of 6) [9/16/2004 9:55:36 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5:

Previous Contents Index Next

Core JavaScript Reference 1.5

Part 4 Appendixes

Appendix A Reserved Words
This appendix lists the reserved words in JavaScript.

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%20Do...robat/JavaScript/Netscape/JS15/Refrence/partapp.html [9/16/2004 9:55:38 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5: A Reserved Words

Previous Contents Index Next

Core JavaScript Reference 1.5

Appendix A Appendix A Reserved Words

This appendix lists the reserved words in JavaScript.

The reserved words in this list cannot be used as JavaScript variables, functions,
methods, or object names. Some of these words are keywords used in JavaScript; others
are reserved for future use.

abstract
boolean
break
byte
case
catch
char
class
const
continue
debugger
default
delete
do
double

else
enum
export
extends
false
final
finally
float
for
function
goto
if
implements
import
in

instanceof
int
interface
long
native
new
null
package
private
protected
public
return
short
static
super

switch
synchronized
this
throw
throws
transient
true
try
typeof
var
void
volatile
while
with

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%20D...bat/JavaScript/Netscape/JS15/Refrence/keywords.html [9/16/2004 9:55:41 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5: B Deprecated Features

Previous Contents Index Next

Core JavaScript Reference 1.5

Appendix B Appendix B Deprecated Features

This appendix lists the features that are deprecated as of JavaScript 15.

●

● RegExp Properties

The following properties are deprecated.

Property Description

$1, ..., $9

Parenthesized substring matches, if any.

$_

See input.

$*

See multiline.

$&

See lastMatch.

file:///C|/Documents%20and%20Settings/george/My%2...t/JavaScript/Netscape/JS15/Refrence/deprecat.html (1 of 3) [9/16/2004 9:55:44 AM]

Core JavaScript Reference 1.5: B Deprecated Features

$+

See lastParen.

$`

See leftContext.

$'

See rightContext.

input

The string against which a regular expression is
matched.

lastMatch

The last matched characters.

lastParen

The last parenthesized substring match, if any.

leftContext

The substring preceding the most recent match.

rightContext

The substring following the most recent match.

The following are now properties of RegExp instances, no longer of the RegExp
object.

file:///C|/Documents%20and%20Settings/george/My%2...t/JavaScript/Netscape/JS15/Refrence/deprecat.html (2 of 3) [9/16/2004 9:55:44 AM]

Core JavaScript Reference 1.5: B Deprecated Features

Property Description

global

Whether or not to test the regular expression against all
possible matches in a string, or only against the first.

ignoreCase

Whether or not to ignore case while attempting a match
in a string.

lastIndex

The index at which to start the next match.

multiline

Whether or not to search in strings across multiple lines.

source The text of the pattern.

● RegExp Methods
The compile method is deprecated.
The valueOf method is no longer specialized for RegExp. Use Object.valueOf.

● Escape sequences
Octal escape sequences (\ followed by one, two, or three octal digits) are
deprecated in string and regular expression literals.
The escape and unescape functions are deprecated. Use encodeURI,
encodeURIComponent, decodeURI or decodeURIComponent to encode and
decode escape sequences for special characters.

Previous Contents Index Next

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%2...t/JavaScript/Netscape/JS15/Refrence/deprecat.html (3 of 3) [9/16/2004 9:55:44 AM]

http://www.netscape.com/

Core JavaScript Reference 1.5:

Previous Contents

Core JavaScript Reference 1.5

 Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Index

Symbols

- (bitwise NOT) operator 1
- (unary negation) operator 1
-- (decrement) operator 1
! (logical NOT) operator 1
!= (not equal) operator 1, 2
!== (strict not equal) operator 1, 2
% (modulus) operator 1
%= operator 1
&& (logical AND) operator 1
& (bitwise AND) operator 1
&= operator 1
) 1
*/ comment 1
*= operator 1
+ (string concatenation) operator 1
++ (increment) operator 1
+= (string concatenation) operator 1
+= operator 1
/* comment 1
// comment 1
/= operator 1
< (less than) operator 1
<< (left shift) operator 1, 2
<<= operator 1
<= (less than or equal) operator 1

file:///C|/Documents%20and%20Settings/george/My%...crobat/JavaScript/Netscape/JS15/Refrence/ix.html (1 of 19) [9/16/2004 9:55:48 AM]

Core JavaScript Reference 1.5:

== (equal) operator 1, 2
=== (strict equal) operator 1, 2
-= operator 1
> (greater than) operator 1
>= (greater than or equal) operator 1
>> (sign-propagating right shift) operator 1, 2
>>= operator 1
>>> (zero-fill right shift) operator 1, 2
>>>= operator 1
?: (conditional) operator 1
^ (bitwise XOR) operator 1
^= operator 1
| (bitwise OR) operator 1
|= operator 1
|| (logical OR) operator 1
(comma) operator 1

A

abs method 1
acos method 1
anchor method 1
anchors

creating 1
AND (&&) logical operator 1
AND (&) bitwise operator 1
anonymous functions 1
apply method 1
arguments array 1
arithmetic operators 1

% (modulus) 1
-- (decrement) 1
- (unary negation) 1
++ (increment) 1

arity property 1
Array object 1
arrays

file:///C|/Documents%20and%20Settings/george/My%...crobat/JavaScript/Netscape/JS15/Refrence/ix.html (2 of 19) [9/16/2004 9:55:48 AM]

Core JavaScript Reference 1.5:

Array object 1
creating from strings 1
deleting elements 1
dense 1
increasing length of 1
indexing 1
initial length of 1, 2
Java 1
joining 1
length of, determining 1, 2
referring to elements 1
sorting 1

asin method 1
assignment operators 1

%= 1
&= 1
*= 1
+= 1
/= 1
<<= 1
-= 1
>>= 1
>>>= 1
^= 1
|= 1
conditional statements and 1

atan2 method 1
atan method 1

B

BIG HTML tag 1
big method 1
bitwise operators 1

& (AND) 1
- (NOT) 1

file:///C|/Documents%20and%20Settings/george/My%...crobat/JavaScript/Netscape/JS15/Refrence/ix.html (3 of 19) [9/16/2004 9:55:48 AM]

Core JavaScript Reference 1.5:

<< (left shift) 1, 2
>> (sign-propagating right shift) 1, 2
>>> (zero-fill right shift) 1, 2
^ (XOR) 1
| (OR) 1
logical 1
shift 1

BLINK HTML tag 1
blink method 1
BOLD HTML tag 1
bold method 1
Boolean object 1

conditional tests and 1
break statement 1

C

callee property 1
caller property 1
call method 1
call method (LiveConnect) 1
capturing parentheses

parentheses
capturing 1

ceil method 1
charAt method 1
charCodeAt method 1
classes, accessing Java 1, 2
className property 1
comma () operator 1
comments 1
comment statement 1
comparison operators 1

!= (not equal) 1, 2
!== (strict not equal) 1, 2
< (less than) 1
<= (less than or equal) 1

file:///C|/Documents%20and%20Settings/george/My%...crobat/JavaScript/Netscape/JS15/Refrence/ix.html (4 of 19) [9/16/2004 9:55:48 AM]

Core JavaScript Reference 1.5:

== (equal) 1, 2
=== (strict equal) 1, 2
> (greater than) 1
>= (greater than or equal) 1

concat method
Array object 1
String object 1

conditional (?:) operator 1
conditional tests

assignment operators and 1
Boolean objects and 1

constructor property
Array object 1
Boolean object 1
Date object 1
Function object 1
Number object 1
Object object 1
RegExp object 1
String object 1

containership
specifying default object 1
with statement and 1

continue statement 1
conventions 1
cos method 1

D

Date object 1
dates

converting to string 1
Date object 1
day of week 1
defining 1
milliseconds since 1970 1
month 1

file:///C|/Documents%20and%20Settings/george/My%...crobat/JavaScript/Netscape/JS15/Refrence/ix.html (5 of 19) [9/16/2004 9:55:48 AM]

Core JavaScript Reference 1.5:

decodeURIComponent function 1
decodeURI function 1
decrement (--) operator 1
default objects, specifying 1
delete operator 1
deleting

array elements 1
objects 1
properties 1

dense arrays 1
directories, conventions used 1
do...while statement 1
document conventions 1

E

encodeURIComponent function 1
encodeURI function 1
E property 1
equals method (LiveConnect 1
Euler's constant 1

raised to a power 1
eval function 1
eval method

LiveConnect 1
Object object 1

exceptions
catching 1
LiveConnect 1
throwing 1
throw statement 1
try...catch statement 1

exec method 1
exp method 1
export statement 1
expressions that return no value 1

file:///C|/Documents%20and%20Settings/george/My%...crobat/JavaScript/Netscape/JS15/Refrence/ix.html (6 of 19) [9/16/2004 9:55:48 AM]

Core JavaScript Reference 1.5:

F

fixed method 1
floating-point 1
floor method 1
fontcolor method 1
fonts

big 1
blinking 1
bold 1

fontsize method 1
for...in statement 1
for loops

continuation of 1
syntax of 1
termination of 1

for statement 1
fromCharCode method 1
function expression 1
Function object 1

specifying arguments for 1
as variable value 1

function operator 1
functions

arguments array 1
callee property 1
caller property 1
declaring 1
Function object 1
length property 1
list of 1
nesting 1
number of arguments 1
return values of 1
top-level 1
as variable value 1

function statement 1

file:///C|/Documents%20and%20Settings/george/My%...crobat/JavaScript/Netscape/JS15/Refrence/ix.html (7 of 19) [9/16/2004 9:55:48 AM]

Core JavaScript Reference 1.5:

G

getDate method 1
getDay method 1
getFullYear method 1
getHours method 1
getMember method (LiveConnect) 1
getMilliseconds method 1
getMinutes method 1
getMonth method 1
getSeconds method 1
getSlot method (LiveConnect) 1
getTime method 1
getTimezoneOffset method 1
getUTCDate method 1
getUTCDay method 1
getUTCFullYear method 1
getUTCHours method 1
getUTCMilliseconds method 1
getUTCMinutes method 1
getUTCMonth method 1
getUTCSeconds method 1
getWindow method (LiveConnect) 1
getWrappedException (LiveConnect) 1
getWrappedExceptionType (LiveConnect) 1
getYear method 1
global object 1
global property 1
GMT time, defined, local time, defined 1

H

file:///C|/Documents%20and%20Settings/george/My%...crobat/JavaScript/Netscape/JS15/Refrence/ix.html (8 of 19) [9/16/2004 9:55:48 AM]

Core JavaScript Reference 1.5:

HTML tags
BIG 1
BLINK 1
BOLD 1

I

IEEE 754 1
if...else statement 1
ignoreCase property 1
import statement 1
increment (++) operator 1
indexOf method 1
index property 1
Infinity property 1
in keyword 1
in operator 1
input property

Array object 1
instanceof operator 1
isFinite function 1
isNaN function 1
italics method 1

J

JavaArray object 1
JavaClass object 1
java object 1
JavaObject object 1
JavaPackage object 1
java property 1
JavaScript

file:///C|/Documents%20and%20Settings/george/My%...crobat/JavaScript/Netscape/JS15/Refrence/ix.html (9 of 19) [9/16/2004 9:55:48 AM]

Core JavaScript Reference 1.5:

background for using 1
reserved words 1
versions and Navigator 1

join method 1
JSException class 1
JSException constructor (LiveConnect) 1
JSObject class 1

K

keywords 1

L

label statement 1
lastIndexOf method 1
lastIndex property 1
left shift (<<) operator 1, 2
length property

arguments array 1
Array object 1
Function object 1
JavaArray object 1
String object 1

link method 1
links

anchors for 1
with no destination 1

LiveConnect
JavaArray object 1
JavaClass object 1
java object 1
JavaObject object 1

file:///C|/Documents%20and%20Settings/george/My%...crobat/JavaScript/Netscape/JS15/Refrence/ix.html (10 of 19) [9/16/2004 9:55:48 AM]

Core JavaScript Reference 1.5:

JavaPackage object 1
JSException class 1
JSObject class 1
netscape object 1
Packages object 1
sun object 1

LN10 property 1
LN2 property 1
LOG10E property 1
LOG2E property 1
logarithms

base of natural 1, 2
natural logarithm of 10 1

logical operators 1
! (NOT) 1
&& (AND) 1
|| (OR) 1
short-circuit evaluation 1

log method 1
lookahead assertions 1
loops

continuation of 1
for 1
termination of 1
while 1

lowercase 1, 2

M

match method 1
Math object 1
MAX_VALUE property 1
max method 1
methods, top-level 1
MIN_VALUE property 1
min method 1
modulo function 1

file:///C|/Documents%20and%20Settings/george/My%...crobat/JavaScript/Netscape/JS15/Refrence/ix.html (11 of 19) [9/16/2004 9:55:48 AM]

Core JavaScript Reference 1.5:

modulus (%) operator 1
multiline property 1

N

NaN property
Number object 1
top-level 1

natural logarithms
base of 1
e 1
e raised to a power 1
of 10 1

Navigator, JavaScript versions supported 1
NEGATIVE_INFINITY property 1
nesting functions 1
netscape.javascript.JSException class 1
netscape.javascript.JSObject class 1
netscape object 1
netscape property 1
new operator 1
non-capturing parentheses

parentheses
non-capturing 1

NOT (!) logical operator 1
NOT (-) bitwise operator 1
Number function 1
Number object 1
numbers

greater of two 1
identifying 1
Number object 1
obtaining integer 1
parsing from strings 1
square root 1

file:///C|/Documents%20and%20Settings/george/My%...crobat/JavaScript/Netscape/JS15/Refrence/ix.html (12 of 19) [9/16/2004 9:55:48 AM]

Core JavaScript Reference 1.5:

O

Object object 1
objects

confirming object type for 1
confirming property type for 1
creating new types 1
deleting 1
establishing default 1
getting list of properties for 1
iterating properties 1
Java, accessing 1

operators 1, 2
arithmetic 1
assignment 1
bitwise 1
comparison 1
list of 1
logical 1
special 1
string 1

OR (|) bitwise operator 1
OR (||) logical operator 1

P

packages, accessing Java 1
Packages object 1
parseFloat function 1
parseInt function 1
parse method 1
PI property 1
pop method 1
POSITIVE_INFINITY property 1

file:///C|/Documents%20and%20Settings/george/My%...crobat/JavaScript/Netscape/JS15/Refrence/ix.html (13 of 19) [9/16/2004 9:55:48 AM]

Core JavaScript Reference 1.5:

pow method 1
properties

confirming object type for 1
deleting 1
getting list of for an object 1
iterating for an object 1
top-level 1

prototype property
Array object 1
Boolean object 1
Date object 1
Function object 1
Number object 1
Object object 1
RegExp object 1
String object 1

push method 1

R

random method 1
RegExp object 1
regular expressions 1
removeMember method (LiveConnect) 1
replace method 1
reserved words 1
return statement 1
reverse method 1
rounding 1
round method 1

S

file:///C|/Documents%20and%20Settings/george/My%...crobat/JavaScript/Netscape/JS15/Refrence/ix.html (14 of 19) [9/16/2004 9:55:48 AM]

Core JavaScript Reference 1.5:

search method 1
selection lists

number of options 1
setDate method 1
setFullYear method 1
setHours method 1
setMember method (LiveConnect) 1
setMilliseconds method 1
setMinutes method 1
setMonth method 1
setSeconds method 1
setSlot method (LiveConnect) 1
setTime method 1
setUTCDate method 1
setUTCFullYear method 1
setUTCHours method 1
setUTCMilliseconds method 1
setUTCMinutes method 1
setUTCMonth method 1
setUTCSeconds method 1
setYear method 1
shift method 1
short-circuit evaluation 1
sign-propagating right shift (>>) operator 1, 2
sin method 1
slice method 1, 2
small method 1
sort method 1
source property 1
special operators 1
splice method 1
split method 1
SQRT1_2 property 1
SQRT2 property 1
sqrt method 1
square roots 1
statements 1, 2

syntax conventions 1
strike method 1
String function 1

file:///C|/Documents%20and%20Settings/george/My%...crobat/JavaScript/Netscape/JS15/Refrence/ix.html (15 of 19) [9/16/2004 9:55:48 AM]

Core JavaScript Reference 1.5:

String object 1
string operators 1
strings

blinking 1
bold 1
character position within 1, 2, 3
concatenating 1
converting from date 1
converting to floating point 1
creating from arrays 1
defining 1
fontsize of 1
length of 1
lowercase 1, 2
parsing 1
splitting into arrays 1
String object 1

sub method 1
substring method 1
substr method 1
sun object 1
sun property 1
sup method 1
switch statement 1
syntax conventions 1

T

tan method 1
test method 1
this keyword 1
throw statement 1
times

Date object 1
defining 1
minutes 1

toGMTString method 1
file:///C|/Documents%20and%20Settings/george/My%...crobat/JavaScript/Netscape/JS15/Refrence/ix.html (16 of 19) [9/16/2004 9:55:48 AM]

Core JavaScript Reference 1.5:

toLocaleString method 1
toLowerCase method 1
top-level properties and functions 1
toSource method

Array object 1
Boolean object 1
Date object 1
Function object 1
Number object 1
Object object 1
RegExp object 1
String object 1

toString method
Array object 1
Boolean object 1
built-in 1
Date object 1
Function object 1
JavaArray object 1
LiveConnect 1
Number object 1, 2, 3, 4
Object object 1
RegExp object 1
String object 1
user-defined 1

toUpperCase method 1
toUTCString method 1
try...catch statement 1
typeof operator 1

U

unary negation (-) operator 1
undefined property 1
Unicode

charCodeAt method 1
unnamed functions 1

file:///C|/Documents%20and%20Settings/george/My%...crobat/JavaScript/Netscape/JS15/Refrence/ix.html (17 of 19) [9/16/2004 9:55:48 AM]

Core JavaScript Reference 1.5:

unshift method 1
unwatch method 1
URLs

conventions used 1
UTC method 1
UTC time, defined 1

V

valueOf method
Array object 1
Boolean object 1
Date object 1
Function object 1
Number object 1
Object object 1
String object 1

variables
declaring 1, 2
initializing 1, 2
syntax for declaring 1, 2

var statement 1, 2
versions of JavaScript 1
void operator 1

W

watch method 1
while loops

continuation of 1
syntax of 1
termination of 1

while statement 1

file:///C|/Documents%20and%20Settings/george/My%...crobat/JavaScript/Netscape/JS15/Refrence/ix.html (18 of 19) [9/16/2004 9:55:48 AM]

Core JavaScript Reference 1.5:

with statement 1

X

XOR (^) operator 1

Z

zero-fill right shift (>>>) operator 1, 2

Previous Contents

Copyright © 2000 Netscape Communications Corp. All rights reserved.

Last Updated September 28, 2000

file:///C|/Documents%20and%20Settings/george/My%...crobat/JavaScript/Netscape/JS15/Refrence/ix.html (19 of 19) [9/16/2004 9:55:48 AM]

http://www.netscape.com/

	Core JavaScript Reference
	Table of Contents
	decodeURI
	About this Book
	New Features in this Release
	What You Should Already Know
	JavaScript Versions
	Where to Find JavaScript Information
	Document Conventions

	Part 1 Object Reference
	Chapter 1 Objects, Methods, and Properties
	Array
	Boolean
	Date
	Function
	java
	JavaArray
	JavaClass
	JavaObject
	JavaPackage
	Math
	netscape
	Number
	Object
	Packages
	RegExp
	String
	sun

	Chapter 2 Top-Level Properties and Functions
	decodeURIComponent
	encodeURI
	encodeURIComponent
	eval
	Infinity
	isFinite
	isNaN
	NaN
	Number
	parseFloat
	parseInt
	String
	undefined

	Part 2 Language Elements
	Chapter 3 Statements
	break
	const
	continue
	do...while
	export
	for
	for...in
	function
	if...else
	import
	label
	return
	switch
	throw
	try...catch
	var
	while
	with

	Chapter 4 Comments
	comment

	Chapter 5 Operators
	Assignment Operators
	Comparison Operators
	Using the Equality Operators

	Arithmetic Operators
	% (Modulus)
	++ (Increment)
	-- (Decrement)
	- (Unary Negation)

	Bitwise Operators
	"> Bitwise Logical Operators
	"> Bitwise Shift Operators

	Logical Operators
	String Operators
	Special Operators
	?: (Conditional operator)
	, (Comma operator)
	delete
	function
	in
	instanceof
	new
	this
	typeof
	void

	Part 3 LiveConnect Class Reference
	Chapter 6 Java Classes, Constructors, and Methods
	JSException
	JSObject

	Part 4 Appendixes
	Appendix A Reserved Words
	Appendix B Deprecated Features

	Index
	Symbols
	A
	B
	C
	D
	E
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

